Abstract Until recently, solution‐processable organic photovoltaics (OPVs) mainly relied on fullerene derivatives as then‐type material, paired with ap‐type conjugated polymer. However, fullerene derivatives have disadvantages that limit OPV performance, thus fueling research of non‐fullerene acceptors (NFAs). Initially, NFAs showed poor performance due to difficulties in obtaining favorable blend morphologies. One example is our work with 2,6‐dialkylamino core‐substituted naphthalene diimides. Researchers then learned to control blend morphology by NFA molecular design. To limit miscibility with polymer while preventing excessive self‐aggregation, non‐planar, twisted or 3D structures were reported. An example of a 3D structure is our work with homoleptic zinc(II) complexes of azadipyrromethene. The most recent design is a planar A‐D‐A conjugated system where the D unit is rigid and has orthogonal side chains to control aggregation. These have propelled power conversion efficiencies (PCEs) to ∼14 %, surpassing fullerene‐based OPVs. These exciting new developments prompt further investigations of NFAs and provide a bright future for OPVs.
more »
« less
A zinc( ii ) complex of di(naphthylethynyl)azadipyrromethene with low synthetic complexity leads to OPV with high industrial accessibility
Organic photovoltaics have reached high power conversion efficiencies (PCE) using non-fullerene acceptors (NFAs). However, the best NFAs tend to have complex syntheses, limiting scalability. Among polymer donors, regioregular poly(3-hexylthiophene) (P3HT) has the greatest potential for commercialization due to its simple synthesis and good stability, but PCEs have been limited. It is thus imperative to find scalable NFAs that give high PCE with P3HT. We report a zinc( ii ) complex of di(naphthylethynyl)azadipyrromethene (Zn(L2) 2 ) as a non-planar NFA that can be synthesized on the gram scale using inexpensive starting materials without chromatography column purification. The NFA has strong absorption in the 600–800 nm region. Time-dependent density-functional theory calculations suggest that the low-energy absorptions can be understood within a four-orbital model involving transitions between π-orbitals on the azadipyrromethene core. OPVs fabricated from P3HT:Zn(L2) 2 blends reached a PCE of 5.5%, and the PCE was not very sensitive to the P3HT:Zn(L2) 2 weight ratio. Due to its shape, Zn(L2) 2 shows isotropic charge transport and its potential as an electron donor is also demonstrated. The combination of simple synthesis, good PCE and photostability, and tolerance to the active material weight ratio demonstrates the potential of Zn(L2) 2 as an active layer material in OPVs.
more »
« less
- Award ID(s):
- 1904868
- PAR ID:
- 10164200
- Date Published:
- Journal Name:
- Journal of Materials Chemistry A
- Volume:
- 7
- Issue:
- 42
- ISSN:
- 2050-7488
- Page Range / eLocation ID:
- 24614 to 24625
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Donor polymer fluorination has proven to be an effective method to improve the power conversion efficiency of fullerene-based polymer solar cells (PSCs). However, this fluorine effect has not been well-studied in systems containing new, non-fullerene acceptors (NFAs). Here, we investigate the impact of donor polymer fluorination in NFA-based solar cells by fabricating devices with either a fluorinated conjugated polymer (FTAZ) or its non-fluorinated counterpart (HTAZ) as the donor polymer and a small molecule NFA (ITIC) as the acceptor. We found that, similar to fullerene-based devices, fluorination leads to an increased open circuit voltage ( V oc ) from the lowered HOMO level and improved fill factor (FF) from the higher charge carrier mobility. More importantly, donor polymer fluorination in this NFA-based system also led to a large increase in short circuit current ( J sc ), which stems from the improved charge transport and extraction in the fluorinated device. This study demonstrates that fluorination is also advantageous in NFA-based PSCs and may improve performance to a higher extent than in fullerene-based PSCs. In the context of other recent reports on demonstrating higher photovoltaic device efficiencies with fluorinated materials, fluorination appears to be a valuable strategy in the design and synthesis of future donors and acceptors for PSCs.more » « less
-
Four new donor-acceptor-acceptor' (D-A-A')-configured donors, CPNT, DCPNT, CPNBT, and DCPNBT equipped with naphtho[1,2-c:5,6-c']bis([1,2,5]-thiadiazole) (NT) or naphtho[2,3-c][1,2,5]thiadiazole (NBT) as the central acceptor (A) unit bridging triarylamine donor (D) and cyano or dicyanovinylene acceptor (A'), were synthesized and characterized. All molecules exhibit bathochromic absorption shifts as compared to those of the benzothiadiazole (BT)-based analogues owing to improved electron-withdrawing and quinoidal character of NT and NBT cores that lead to stronger intramolecular charge transfer. Favorable energy level alignments with C70 , together with the good thermal stability and the antiparallel dimeric packing render CPNT and DCPNT suitable donors for vacuum-processed organic photovoltaics (OPV)s. OPVs based on DCPNT : C70 active layers displayed the best power conversion efficiency (PCE)=8.3%, along with an open circuit voltage of 0.92 V, a short circuit current of 14.5 mA cm-2 and a fill factor of 62% under 1 sun intensity, simulated AM1.5G illumination. Importantly, continuous light-soaking with AM 1.5G illumination has verified the durability of the devices based on CPNT:C70 and DCPNT : C70 as the active blends. The devices were examined for their feasibility of indoor light harvesting under 500 lux illumination by a TLD-840 fluorescent lamp, giving PCE=12.8% and 12.6%, respectively. These results indicate that the NT-based D-A-A'-type donors CPNT and DCPNT are potential candidates for high-stability vacuum-processed OPVs suitable for indoor energy harvesting.more » « less
-
Organic solar cells (OSCs) using non-fullerene acceptors (NFAs) afford exceptional photovoltaic performance metrics, however, their stability remains a significant challenge. Existing OSC stability studies focus on understanding degradation rate-performance relationships, improving interfacial layers, and suppressing degradative chemical reaction pathways. Nevertheless, there is a knowledge gap concerning how such degradation affects crystal structure, electronic states, and recombination dynamics that ultimately impact NFA performance. Here we seek a quantitative relationship between OSC metrics and blend morphology, trap density of states, charge carrier mobility, and recombination processes during the UV-light-induced degradation of PBDB-TF:Y6 inverted solar cells as the PCE (power conversion efficiency) falls from 17.3 to 5.0%. Temperature-dependent electrical and impedance measurements reveal deep traps at 0.48 eV below the conduction band that are unaffected by Y6 degradation, and shallow traps at 0.15 eV below the conduction band that undergo a three-fold density of states increase at the PCE degradation onset. Computational analysis correlates vinyl oxidation with a new trap state at 0.25 eV below the conduction band, likely involving charge transfer from the UV-absorbing ZnO electron transport layer. In-situ integrated photocurrent analysis and transient absorption spectroscopy reveal that these traps lower electron mobility and increase recombination rates during degradation. Grazing-incidence wide-angle x-ray scattering and computational analysis reveal that the degraded Y6 crystallite morphology is largely preserved but that <1% of degraded Y6 molecules cause OSC PCE performance degradation by ≈50%. Together the detailed electrical, impedance, morphological, ultrafast spectroscopic, matrix-assisted laser desorption/ionization time-of-flight (MALDI-ToF) spectroscopy, and computational data reveal that the trap state energies and densities accompanying Y6 vinyl oxidation are primarily responsible for the PCE degradation in these operating NFA-OSCs.more » « less
-
Abstract Understanding the correlation between polymer aggregation, miscibility, and device performance is important to establish a set of chemistry design rules for donor polymers with nonfullerene acceptors (NFAs). Employing a donor polymer with strong temperature‐dependent aggregation, namely PffBT4T‐2OD [poly[(5,6‐difluoro‐2,1,3‐benzothiadiazol‐4,7‐diyl)‐alt‐(3,3″′‐di(2‐octyldodecyl)‐2,2′;5′,2″;5″,2″′‐quaterthiophen‐5,5‐diyl)], also known as PCE‐11 as a base polymer, five copolymer derivatives having a different thiophene linker composition are blended with the common NFA O‐IDTBR to investigate their photovoltaic performance. While the donor polymers have similar optoelectronic properties, it is found that the device power conversion efficiency changes drastically from 1.8% to 8.7% as a function of thiophene content in the donor polymer. Results of structural characterization show that polymer aggregation and miscibility with O‐IDTBR are a strong function of the chemical composition, leading to different donor–acceptor blend morphology. Polymers having a strong tendency to aggregate are found to undergo fast aggregation prior to liquid–liquid phase separation and have a higher miscibility with NFA. These properties result in smaller mixed donor–acceptor domains, stronger PL quenching, and more efficient exciton dissociation in the resulting cells. This work indicates the importance of both polymer aggregation and donor–acceptor interaction on the formation of bulk heterojunctions in polymer:NFA blends.more » « less
An official website of the United States government

