Developing efficient and stable organic photovoltaics (OPVs) is crucial for the technology's commercial success. However, combining these key attributes remains challenging. Herein, we incorporate the small molecule 2-((3,6-dibromo-9 H -carbazol-9-yl)ethyl)phosphonic acid (Br-2PACz) between the bulk-heterojunction (BHJ) and a 7 nm-thin layer of MoO 3 in inverted OPVs, and study its effects on the cell performance. We find that the Br-2PACz/MoO 3 hole-extraction layer (HEL) boosts the cell's power conversion efficiency (PCE) from 17.36% to 18.73% (uncertified), making them the most efficient inverted OPVs to date. The factors responsible for this improvement include enhanced charge transport, reduced carrier recombination, and favourable vertical phase separation of donor and acceptor components in the BHJ. The Br-2PACz/MoO 3 -based OPVs exhibit higher operational stability under continuous illumination and thermal annealing (80 °C). The T 80 lifetime of OPVs featuring Br-2PACz/MoO 3 – taken as the time over which the cell's PCE reduces to 80% of its initial value – increases compared to MoO 3 -only cells from 297 to 615 h upon illumination and from 731 to 1064 h upon continuous heating. Elemental analysis of the BHJs reveals the enhanced stability to originate from the partially suppressed diffusion of Mo ions into the BHJ and the favourable distribution of the donor and acceptor components induced by the Br-2PACz. 
                        more » 
                        « less   
                    
                            
                            New D‐A‐A’‐Configured Small Molecule Donors Employing Conjugation to Red‐shift the Absorption for Photovoltaics
                        
                    
    
            Four new donor-acceptor-acceptor' (D-A-A')-configured donors, CPNT, DCPNT, CPNBT, and DCPNBT equipped with naphtho[1,2-c:5,6-c']bis([1,2,5]-thiadiazole) (NT) or naphtho[2,3-c][1,2,5]thiadiazole (NBT) as the central acceptor (A) unit bridging triarylamine donor (D) and cyano or dicyanovinylene acceptor (A'), were synthesized and characterized. All molecules exhibit bathochromic absorption shifts as compared to those of the benzothiadiazole (BT)-based analogues owing to improved electron-withdrawing and quinoidal character of NT and NBT cores that lead to stronger intramolecular charge transfer. Favorable energy level alignments with C70 , together with the good thermal stability and the antiparallel dimeric packing render CPNT and DCPNT suitable donors for vacuum-processed organic photovoltaics (OPV)s. OPVs based on DCPNT : C70 active layers displayed the best power conversion efficiency (PCE)=8.3%, along with an open circuit voltage of 0.92 V, a short circuit current of 14.5 mA cm-2 and a fill factor of 62% under 1 sun intensity, simulated AM1.5G illumination. Importantly, continuous light-soaking with AM 1.5G illumination has verified the durability of the devices based on CPNT:C70 and DCPNT : C70 as the active blends. The devices were examined for their feasibility of indoor light harvesting under 500 lux illumination by a TLD-840 fluorescent lamp, giving PCE=12.8% and 12.6%, respectively. These results indicate that the NT-based D-A-A'-type donors CPNT and DCPNT are potential candidates for high-stability vacuum-processed OPVs suitable for indoor energy harvesting. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1905401
- PAR ID:
- 10183464
- Date Published:
- Journal Name:
- Chemistry – An Asian Journal
- ISSN:
- 1861-4728
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Photoconversion in organic photovoltaic cells (OPVs) is limited by carrier recombination that frustrates charge collection at the electrodes. Consequently, identification of the dominant recombination mechanisms is critical to inform device design for improved performance. This analysis is complicated by the need to have a quantitative measure of carrier generation. Here, we demonstrate a photovoltage-based technique to directly investigate the generation of charge carriers in OPVs. This technique allows illuminated current losses to both geminate and non-geminate recombination to be directly quantified as a function of voltage. While broadly applicable, here the technique is demonstrated on OPVs based on the donor–acceptor pairings of 2-((7-(4- N , N -ditolylaminophenylen-1-yl)benzo[ c ][1,2,5]thiadiazol-4-yl)methylene)malononitrile (DTDCPB)-C 60 and copper phthalocyanine (CuPc)-C 60 . Both structures are limited by geminate recombination at short-circuit and under reverse bias. Under forward bias, the severity of non-geminate recombination depends on both materials selection and device architecture. Consequently, this technique quantitatively casts changes in performance with choice of OPV architecture in terms of the relative roles of geminate and non-geminate recombination.more » « less
- 
            A series of model oligomers consisting of combinations of a traditional strong donor unit (3,4-ethylenedioxythiophene), a traditional strong acceptor unit (benzo[ c ][1,2,5]thiadiazole), and the ambipolar unit thieno[3,4- b ]pyrazine were synthesized via cross-coupling methods. The prepared oligomers include all six possible dimeric combinations in order to characterize the extent and nature of donor–acceptor effects commonly used in the design of conjugated materials, with particular focus on understanding how the inclusion of ambipolar units influences donor–acceptor frameworks. The full oligomeric series was thoroughly investigated via photophysical and electrochemical studies, in parallel with density functional theory (DFT) calculations, in order to correlate the nature and extent of donor–acceptor effects on both frontier orbital energies and the desired narrowing of the HOMO–LUMO energy gap. The corresponding relationships revealed should then provide a deeper understanding of donor–acceptor interactions and their application to conjugated materials.more » « less
- 
            Ten novel fullerene-derivatives (FDs) of C60 and C70 had been designed as acceptor for polymer solar cell (PSC) by employing the quantitative structure-property relationship (QSPR) model, which was developed strategically with a reasonably big pool of experimental power conversion efficiency (PCE) data. The QSPR model was checked and validated with stringent parameter and reliability of predicted PCE values of all designed FDs. They were assessed by the applicability domain (AD) and process randomization test. The predicted PCE of FDs range from 7.96 to 23.01. The obtained encouraging results led us to the additional theoretical analysis of the energetics and UV-Vis spectra of isolated dyes employing Density functional theory (DFT) and Time-dependent-DFT (TD-DFT) calculations using PBE/6-31G(d,p) and CAM-B3LYP/6-311G(d,p) level calculations, respectively. The FD4 is the best C60-derivatives candidates for PSCs as it has the lowest exciton binding energy, up-shifted lowest unoccupied molecular orbital (LUMO) energy level to increase open-circuit voltage (VOC) and strong absorption in the UV region. In case of C70-derivatives, FD7 is potential candidate for future PSCs due to its strong absorption in UV-Vis region and lower exciton binding energy with higher VOC. Our optoelectronic results strongly support the developed QSPR model equation. Analyzing QSPR model and optoelectronic parameters, we concluded that the FD1, FD2, FD4, and FD10 are the most potential candidates for acceptor fragment of fullerene-based PSC. The outcomes of tactical molecular design followed by the investigation of optoelectronic features are suggested to be employed as a significant resource for the synthesis of FDs as an acceptor of PSCs.more » « less
- 
            Organic photovoltaics have reached high power conversion efficiencies (PCE) using non-fullerene acceptors (NFAs). However, the best NFAs tend to have complex syntheses, limiting scalability. Among polymer donors, regioregular poly(3-hexylthiophene) (P3HT) has the greatest potential for commercialization due to its simple synthesis and good stability, but PCEs have been limited. It is thus imperative to find scalable NFAs that give high PCE with P3HT. We report a zinc( ii ) complex of di(naphthylethynyl)azadipyrromethene (Zn(L2) 2 ) as a non-planar NFA that can be synthesized on the gram scale using inexpensive starting materials without chromatography column purification. The NFA has strong absorption in the 600–800 nm region. Time-dependent density-functional theory calculations suggest that the low-energy absorptions can be understood within a four-orbital model involving transitions between π-orbitals on the azadipyrromethene core. OPVs fabricated from P3HT:Zn(L2) 2 blends reached a PCE of 5.5%, and the PCE was not very sensitive to the P3HT:Zn(L2) 2 weight ratio. Due to its shape, Zn(L2) 2 shows isotropic charge transport and its potential as an electron donor is also demonstrated. The combination of simple synthesis, good PCE and photostability, and tolerance to the active material weight ratio demonstrates the potential of Zn(L2) 2 as an active layer material in OPVs.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    