skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Characterization of the Fe metalloproteome of a ubiquitous marine heterotroph, Pseudoalteromonas (BB2-AT2): multiple bacterioferritin copies enable significant Fe storage
Fe is a critical nutrient to the marine biological pump, which is the process that exports photosynthetically fixed carbon in the upper ocean to the deep ocean. Fe limitation controls photosynthetic activity in major regions of the oceans, and the subsequent degradation of exported photosynthetic material is facilitated particularly by marine heterotrophic bacteria. Despite their importance in the carbon cycle and the scarcity of Fe in seawater, the Fe requirements, storage and cytosolic utilization of these marine heterotrophs has been less studied. Here, we characterized the Fe metallome of Pseudoalteromonas (BB2-AT2). We found that with two copies of bacterioferritin (Bfr), Pseudoalteromonas possesses substantial capacity for luxury uptake of Fe. Fe : C in the whole cell metallome was estimated (assuming C : P stoichiometry ∼51 : 1) to be between ∼83 μmol : mol Fe : C, ∼11 fold higher than prior marine bacteria surveys. Under these replete conditions, other major cytosolic Fe-associated proteins were observed including superoxide dismutase (SodA; with other metal SOD isoforms absent under Fe replete conditions) and catalase (KatG) involved in reactive oxygen stress mitigation and aconitase (AcnB), succinate dehydrogenase (FrdB) and cytochromes (QcrA and Cyt1) involved in respiration. With the aid of singular value decomposition (SVD), we were able to computationally attribute peaks within the metallome to specific metalloprotein contributors. A putative Fe complex TonB transporter associated with the closely related Alteromonas bacterium was found to be abundant within the Pacific Ocean mesopelagic environment. Despite the extreme scarcity of Fe in seawater, the marine heterotroph Pseudoalteromonas has expansive Fe storage capacity and utilization strategies, implying that within detritus and sinking particles environments, there is significant opportunity for Fe acquisition. Together these results imply an evolved dedication of marine Pseudoalteromonas to maintaining an Fe metalloproteome, likely due to its dependence on Fe-based respiratory metabolism.  more » « less
Award ID(s):
1658030 1850719
PAR ID:
10164391
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Metallomics
Volume:
12
Issue:
5
ISSN:
1756-5901
Page Range / eLocation ID:
654 to 667
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Pseudoalteromonas (BB2-AT2) is a ubiquitous marine heterotroph, often associated with labile organic carbon sources in the ocean (e.g. phytoplankton blooms and sinking particles). Heterotrophs hydrolyze exported photosynthetic materials, components of the biological carbon pump, with the use of diverse metalloenzymes containing zinc (Zn), manganese (Mn), cobalt (Co), and nickel (Ni). Studies on the metal requirements and cytosolic utilization of metals for marine heterotrophs are scarce, despite their relevance to global carbon cycling. Here, we characterized the Zn, Mn, Co, and Ni metallome of BB2-AT2. We found that the Zn metallome is complex and cytosolic Zn is associated with numerous proteins for transcription (47.2% of the metallome, obtained from singular value decomposition of the metalloproteomic data), translation (33.5%), proteolysis (12.8%), and alkaline phosphatase activity (6.4%). Numerous proteolytic enzymes also appear to be putatively associated with Mn, and to a lesser extent, Co. Putative identification of the Ni-associated proteins, phosphoglucomutase and a protein in the cupin superfamily, provides new insights for Ni utilization in marine heterotrophs. BB2-AT2 relies on numerous transition metals for proteolytic and phosphatase activities, inferring an adaptative potential to metal limitation. Our field observations of increased alkaline phosphatase activity upon addition of Zn in field incubations suggest that such metal limitation operates in sinking particulate material collected from sediment traps. Taken together, this study improves our understanding of the Zn, Mn, Co, and Ni metallome of marine heterotrophic bacteria and provides novel and mechanistic frameworks for understanding the influence of nutrient limitation on biogeochemical cycling. 
    more » « less
  2. null (Ed.)
    High-affinity iron (Fe) scavenging compounds, or siderophores, are widely employed by soil bacteria to survive scarcity in bioavailable Fe. Siderophore biosynthesis relies on cellular carbon metabolism, despite reported decrease in both carbon uptake and Fe-containing metabolic proteins in Fe-deficient cells. Given this paradox, the metabolic network required to sustain the Fe-scavenging strategy is poorly understood. Here, through multiple 13 C-metabolomics experiments with Fe-replete and Fe-limited cells, we uncover how soil Pseudomonas species reprogram their metabolic pathways to prioritize siderophore biosynthesis. Across the three species investigated ( Pseudomonas putida KT2440, Pseudomonas protegens Pf-5, and Pseudomonas putida S12), siderophore secretion is higher during growth on gluconeogenic substrates than during growth on glycolytic substrates. In response to Fe limitation, we capture decreased flux toward the tricarboxylic acid (TCA) cycle during the metabolism of glycolytic substrates but, due to carbon recycling to the TCA cycle via enhanced anaplerosis, the metabolism of gluconeogenic substrates results in an increase in both siderophore secretion (up to threefold) and Fe extraction (up to sixfold) from soil minerals. During simultaneous feeding on the different substrate types, Fe deficiency triggers a hierarchy in substrate utilization, which is facilitated by changes in protein abundances for substrate uptake and initial catabolism. Rerouted metabolism further promotes favorable fluxes in the TCA cycle and the gluconeogenesis–anaplerosis nodes, despite decrease in several proteins in these pathways, to meet carbon and energy demands for siderophore precursors in accordance with increased proteins for siderophore biosynthesis. Hierarchical carbon metabolism thus serves as a critical survival strategy during the metal nutrient deficiency. 
    more » « less
  3. Abstract In the ocean, dissolved organic phosphorus (DOP) supports the health and productivity of marine phytoplankton, a phenomenon most often investigated under inorganic phosphate (Pi) scarcity. However, microbial DOP acquisition in Pi replete environments remains poorly understood. Here, we conducted a combination of nutrient addition experiments, alkaline phosphatase (AP) rate measurements, and metatranscriptomics along an onshore-to-offshore gradient in the California Current Ecosystem (CCE), an upwelling region relatively replete in Pi. We found that AP activity (APA) and eukaryotic gene transcripts for DOP utilization were present throughout the CCE. In bottle incubations, APA was upregulated in response to iron (Fe) and nitrogen (N) additions. Major contributors to these trends included atypical alkaline phosphatases (APaty) of diatoms in upwelling areas, and unclassified phosphodiesterases (other PDE) of multiple eukaryotic taxa in offshore regimes. APA and gene expression dynamics were not coupled to phytoplankton growth, suggesting that phytoplankton experience underlying P stress, or a state of cellular metabolism caused by Pi scarcity, even in regions primarily growth-limited by other elements. APatyand PDE (other) genes were highly abundant among the microbial community phosphatase pool, highlighting the importance of detecting these atypical and unclassified proteins via manual curation of metatranscriptomics data. Altogether, these results emphasize the functional diversity of phosphatases sustaining microbial community health in diverse and productive marine habitats. 
    more » « less
  4. Abstract Unlike biologically available nitrogen and phosphorus, which are often at limiting concentrations in surface seawater, sulfur in the form of sulfate is plentiful and not considered to constrain marine microbial activity. Nonetheless, in a model system in which a marine bacterium obtains all of its carbon from co-cultured phytoplankton, bacterial gene expression suggests that at least seven dissolved organic sulfur (DOS) metabolites support bacterial heterotrophy. These labile exometabolites of marine dinoflagellates and diatoms include taurine, N-acetyltaurine, isethionate, choline-O-sulfate, cysteate, 2,3-dihydroxypropane-1-sulfonate (DHPS), and dimethylsulfoniopropionate (DMSP). Leveraging from the compounds identified in this model system, we assessed the role of sulfur metabolites in the ocean carbon cycle by mining the Tara Oceans dataset for diagnostic genes. In the 1.4 million bacterial genome equivalents surveyed, estimates of the frequency of genomes harboring the capability for DOS metabolite utilization ranged broadly, from only 1 out of every 190 genomes (for the C2 sulfonate isethionate) to 1 out of every 5 (for the sulfonium compound DMSP). Bacteria able to participate in DOS transformations are dominated by Alphaproteobacteria in the surface ocean, but by SAR324, Acidimicrobiia, and Gammaproteobacteria at mesopelagic depths, where the capability for utilization occurs in higher frequency than in surface bacteria for more than half the sulfur metabolites. The discovery of an abundant and diverse suite of marine bacteria with the genetic capacity for DOS transformation argues for an important role for sulfur metabolites in the pelagic ocean carbon cycle. 
    more » « less
  5. Martiny, Jennifer B. (Ed.)
    ABSTRACT The marine cyanobacterium Prochlorococcus numerically dominates the phytoplankton community of the nutrient-limited open ocean, establishing itself as the most abundant photosynthetic organism on Earth. This ecological success has been attributed to lower cell quotas for limiting nutrients, superior resource acquisition, and other advantages associated with cell size reduction and genome streamlining. In this study, we tested the prediction that Prochlorococcus outcompetes its rivals for scarce nutrients and that this advantage leads to its numerical success in nutrient-limited waters. Strains of Prochlorococcus and its sister genus Synechococcus grew well in both mono- and cocultures when nutrients were replete. However, in nitrogen-limited medium, Prochlorococcus outgrew Synechococcus but only when heterotrophic bacteria were also present. In the nitrogen-limited medium, the heterotroph Alteromonas macleodii outcompeted Synechococcus for nitrogen but only if stimulated by the exudate released by Prochlorococcus or if a proxy organic carbon source was provided. Genetic analysis of Alteromonas suggested that it outcompetes Synechococcus for nitrate and/or nitrite, during which cocultured Prochlorococcus grows on ammonia or other available nitrogen species. We propose that Prochlorococcus can stimulate antagonism between heterotrophic bacteria and potential phytoplankton competitors through a metabolic cross-feeding interaction, and this stimulation could contribute to the numerical success of Prochlorococcus in nutrient-limited regions of the ocean. IMPORTANCE In nutrient-poor habitats, competition for limited resources is thought to select for organisms with an enhanced ability to scavenge nutrients and utilize them efficiently. Such adaptations characterize the cyanobacterium Prochlorococcus , the most abundant photosynthetic organism in the nutrient-limited open ocean. In this study, the competitive superiority of Prochlorococcus over a rival cyanobacterium, Synechococcus , was captured in laboratory culture. Critically, this outcome was achieved only when key aspects of the open ocean were simulated: a limited supply of nitrogen and the presence of heterotrophic bacteria. The results indicate that Prochlorococcus promotes its numerical dominance over Synechococcus by energizing the heterotroph’s ability to outcompete Synechococcus for available nitrogen. This study demonstrates how interactions between trophic groups can influence interactions within trophic groups and how these interactions likely contribute to the success of the most abundant photosynthetic microorganism. 
    more » « less