skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Characterization of the metalloproteome of Pseudoalteromonas (BB2-AT2): biogeochemical underpinnings for zinc, manganese, cobalt, and nickel cycling in a ubiquitous marine heterotroph
Abstract Pseudoalteromonas (BB2-AT2) is a ubiquitous marine heterotroph, often associated with labile organic carbon sources in the ocean (e.g. phytoplankton blooms and sinking particles). Heterotrophs hydrolyze exported photosynthetic materials, components of the biological carbon pump, with the use of diverse metalloenzymes containing zinc (Zn), manganese (Mn), cobalt (Co), and nickel (Ni). Studies on the metal requirements and cytosolic utilization of metals for marine heterotrophs are scarce, despite their relevance to global carbon cycling. Here, we characterized the Zn, Mn, Co, and Ni metallome of BB2-AT2. We found that the Zn metallome is complex and cytosolic Zn is associated with numerous proteins for transcription (47.2% of the metallome, obtained from singular value decomposition of the metalloproteomic data), translation (33.5%), proteolysis (12.8%), and alkaline phosphatase activity (6.4%). Numerous proteolytic enzymes also appear to be putatively associated with Mn, and to a lesser extent, Co. Putative identification of the Ni-associated proteins, phosphoglucomutase and a protein in the cupin superfamily, provides new insights for Ni utilization in marine heterotrophs. BB2-AT2 relies on numerous transition metals for proteolytic and phosphatase activities, inferring an adaptative potential to metal limitation. Our field observations of increased alkaline phosphatase activity upon addition of Zn in field incubations suggest that such metal limitation operates in sinking particulate material collected from sediment traps. Taken together, this study improves our understanding of the Zn, Mn, Co, and Ni metallome of marine heterotrophic bacteria and provides novel and mechanistic frameworks for understanding the influence of nutrient limitation on biogeochemical cycling.  more » « less
Award ID(s):
1924554 2123055 2048774 1850719
PAR ID:
10312340
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Metallomics
Volume:
13
Issue:
12
ISSN:
1756-591X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Fe is a critical nutrient to the marine biological pump, which is the process that exports photosynthetically fixed carbon in the upper ocean to the deep ocean. Fe limitation controls photosynthetic activity in major regions of the oceans, and the subsequent degradation of exported photosynthetic material is facilitated particularly by marine heterotrophic bacteria. Despite their importance in the carbon cycle and the scarcity of Fe in seawater, the Fe requirements, storage and cytosolic utilization of these marine heterotrophs has been less studied. Here, we characterized the Fe metallome of Pseudoalteromonas (BB2-AT2). We found that with two copies of bacterioferritin (Bfr), Pseudoalteromonas possesses substantial capacity for luxury uptake of Fe. Fe : C in the whole cell metallome was estimated (assuming C : P stoichiometry ∼51 : 1) to be between ∼83 μmol : mol Fe : C, ∼11 fold higher than prior marine bacteria surveys. Under these replete conditions, other major cytosolic Fe-associated proteins were observed including superoxide dismutase (SodA; with other metal SOD isoforms absent under Fe replete conditions) and catalase (KatG) involved in reactive oxygen stress mitigation and aconitase (AcnB), succinate dehydrogenase (FrdB) and cytochromes (QcrA and Cyt1) involved in respiration. With the aid of singular value decomposition (SVD), we were able to computationally attribute peaks within the metallome to specific metalloprotein contributors. A putative Fe complex TonB transporter associated with the closely related Alteromonas bacterium was found to be abundant within the Pacific Ocean mesopelagic environment. Despite the extreme scarcity of Fe in seawater, the marine heterotroph Pseudoalteromonas has expansive Fe storage capacity and utilization strategies, implying that within detritus and sinking particles environments, there is significant opportunity for Fe acquisition. Together these results imply an evolved dedication of marine Pseudoalteromonas to maintaining an Fe metalloproteome, likely due to its dependence on Fe-based respiratory metabolism. 
    more » « less
  2. null (Ed.)
    Abstract Labile low-molecular-mass (LMM) transition metal complexes play essential roles in metal ion trafficking, regulation, and signalling in biological systems, yet their chemical identities remain largely unknown due to their rapid ligand-exchange rates and weak M–L bonds. Here, an Escherichia coli cytosol isolation procedure was developed that was devoid of detergents, strongly coordinating buffers, and EDTA. The interaction of the metal ions from these complexes with a SEC column was minimized by pre-loading the column with 67 ZnSO 4 and then monitoring 66 Zn and other metals by inductively coupled plasma mass spectrometry (ICP-MS) when investigating cytosolic ultrafiltration flow-through-solutions (FTSs). Endogenous cytosolic salts suppressed ESI-MS signals, making the detection of metal complexes difficult. FTSs contained ca. 80 µM Fe, 15 µM Ni, 13 µM Zn, 10 µM Cu, and 1.4 µM Mn (after correcting for dilution during cytosol isolation). FTSs exhibited 2–5 Fe, at least 2 Ni, 2–5 Zn, 2–4 Cu, and at least 2 Mn species with apparent masses between 300 and 5000 Da. Fe(ATP), Fe(GSH), and Zn(GSH) standards were passed through the column to assess their presence in FTS. Major LMM sulfur- and phosphorus-containing species were identified. These included reduced and oxidized glutathione, methionine, cysteine, orthophosphate, and common mono- and di-nucleotides such as ATP, ADP, AMP, and NADH. FTSs from cells grown in media supplemented with one of these metal salts exhibited increased peak intensity for the supplemented metal indicating that the size of the labile metal pools in E. coli is sensitive to the concentration of nutrient metals. 
    more » « less
  3. Abstract This review encompasses guided ion beam tandem mass spectrometry studies of hydrated metal dication complexes. Metals include the Group 2 alkaline earths (Mg, Ca, Sr, and Ba), late first‐row transition metals (Mn, Fe, Co, Ni, Cu, and Zn), along with Cd. In all cases, threshold collision‐induced dissociation experiments are used to quantitatively determine the sequential hydration energies for M 2+ (H 2 O) x complexes ranging in size from one to 11 water molecules. Periodic trends in these bond dissociation energies are examined and discussed. Values are compared to other experimental results when available. In addition to dissociation by simple water ligand loss, complexes at a select size (which differs from metal to metal) are also observed to undergo charge separation to yield a hydrated metal hydroxide cation and a hydrated proton. This leads to the concept of a critical size, x crit , and the periodic trends in this value are also discussed. 
    more » « less
  4. Alkaline fuel cells enable the use of earth-abundant elements to replace Pt but are hindered by the sluggish kinetics of the hydrogen oxidation reaction (HOR) in alkaline media. Precious metal–free HOR electrocatalysts need to overcome two major challenges: their low intrinsic activity from too strong a hydrogen-binding energy and poor durability due to rapid passivation from metal oxide formation. Here, we designed a Ni-based electrocatalyst with a 2-nm nitrogen-doped carbon shell (Ni@CN x ) that serves as a protection layer and significantly enhances HOR kinetics. A Ni@CN x anode, paired with a Co−Mn spinel cathode, exhibited a record peak power density of over 200 mW/cm 2 in a completely precious metal–free alkaline membrane fuel cell. Ni@CN x exhibited superior durability when compared to a Ni nanoparticle catalyst due to the enhanced oxidation resistance provided by the CN x layer. Density functional theory calculations suggest that graphitic carbon layers on the surface of the Ni nanoparticles lower the H binding energy to Ni, bringing it closer to the previously predicted value for optimal HOR activity, and single Ni atoms anchored to pyridinic or pyrrolic N defects of graphene can serve as the HOR active sites. The strategy described here marks a milestone in electrocatalyst design for low-cost hydrogen fuel cells and other energy technologies with completely precious metal–free electrocatalysts. 
    more » « less
  5. Aqueous zinc ion batteries (ZIBs) are emerging as a highly promising alternative technology for grid-scale applications where high safety, environmental-friendliness, and high specific capacities are needed. It remains a significant challenge, however, to develop a cathode with a high rate capability and long-term cycling stability. Here, we demonstrate diffusion-controlled behavior in the intercalation of zinc ions into highly porous, Mn 4+ -rich, and low-band-gap Ni x Mn 3−x O 4 nano-particles with a carbon matrix formed in situ (with the composite denoted as Ni x Mn 3−x O 4 @C, x = 1), which exhibits superior rate capability (139.7 and 98.5 mA h g −1 at 50 and 1200 mA g −1 , respectively) and outstanding cycling stability (128.8 mA h g −1 remaining at 400 mA g −1 after 850 cycles). Based on the obtained experimental results and density functional theory (DFT) calculations, cation-site Ni substitution combined with a sufficient doping concentration can decrease the band gap and effectively improve the electronic conductivity in the crystal. Furthermore, the amorphous carbon shell and highly porous Mn 4+ -rich structure lead to fast electron transport and short Zn 2+ diffusion paths in a mild aqueous electrolyte. This study provides an example of a technique to optimize cathode materials for high-performance rechargeable ZIBs and design advanced intercalation-type materials for other energy storage devices. 
    more » « less