The weighted nearest neighbors (WNN) estimator has been popularly used as a flexible and easy-to-implement nonparametric tool for mean regression estimation. The bagging technique is an elegant way to form WNN estimators with weights automatically generated to the nearest neighbors (Steele, 2009; Biau et al., 2010); we name the resulting estimator as the distributional nearest neighbors (DNN) for easy reference. Yet, there is a lack of distributional results for such estimator, limiting its application to statistical inference. Moreover, when the mean regression function has higher-order smoothness, DNN does not achieve the optimal nonparametric convergence rate, mainly because of the bias issue. In this work, we provide an in-depth technical analysis of the DNN, based on which we suggest a bias reduction approach for the DNN estimator by linearly combining two DNN estimators with different subsampling scales, resulting in the novel two-scale DNN (TDNN) estimator. The two-scale DNN estimator has an equivalent representation of WNN with weights admitting explicit forms and some being negative. We prove that, thanks to the use of negative weights, the two-scale DNN estimator enjoys the optimal nonparametric rate of convergence in estimating the regression function under the fourth order smoothness condition. We further go beyond estimation and establish that the DNN and two-scale DNN are both asymptotically normal as the subsampling scales and sample size diverge to infinity. For the practical implementation, we also provide variance estimators and a distribution estimator using the jackknife and bootstrap techniques for the two-scale DNN. These estimators can be exploited for constructing valid confidence intervals for nonparametric inference of the regression function. The theoretical results and appealing nite-sample performance of the suggested two-scale DNN method are illustrated with several simulation examples and a real data application.
more »
« less
The bias of isotonic regression
We study the bias of the isotonic regression estimator. While there is extensive work characterizing the mean squared error of the iso- tonic regression estimator, relatively little is known about the bias. In this paper, we provide a sharp characterization, proving that the bias scales as O(n−β/3) up to log factors, where 1 ≤ β ≤ 2 is the exponent correspond- ing to H ̈older smoothness of the underlying mean. Importantly, this result only requires a strictly monotone mean and that the noise distribution has subexponential tails, without relying on symmetric noise or other restrictive assumptions.
more »
« less
- Award ID(s):
- 1811767
- PAR ID:
- 10164435
- Date Published:
- Journal Name:
- Electronic journal of statistics
- Volume:
- 14
- ISSN:
- 1935-7524
- Page Range / eLocation ID:
- 801-834
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Abstract Estimating the mean of a probability distribution using i.i.d. samples is a classical problem in statistics, wherein finite-sample optimal estimators are sought under various distributional assumptions. In this paper, we consider the problem of mean estimation when independent samples are drawn from $$d$$-dimensional non-identical distributions possessing a common mean. When the distributions are radially symmetric and unimodal, we propose a novel estimator, which is a hybrid of the modal interval, shorth and median estimators and whose performance adapts to the level of heterogeneity in the data. We show that our estimator is near optimal when data are i.i.d. and when the fraction of ‘low-noise’ distributions is as small as $$\varOmega \left (\frac{d \log n}{n}\right )$$, where $$n$$ is the number of samples. We also derive minimax lower bounds on the expected error of any estimator that is agnostic to the scales of individual data points. Finally, we extend our theory to linear regression. In both the mean estimation and regression settings, we present computationally feasible versions of our estimators that run in time polynomial in the number of data points.more » « less
-
Abstract Observational epidemiological studies often confront the problem of estimating exposure‐disease relationships when the exposure is not measured exactly. Regression calibration (RC) is a common approach to correct for bias in regression analysis with covariate measurement error. In survival analysis with covariate measurement error, it is well known that the RC estimator may be biased when the hazard is an exponential function of the covariates. In the paper, we investigate the RC estimator with general hazard functions, including exponential and linear functions of the covariates. When the hazard is a linear function of the covariates, we show that a risk set regression calibration (RRC) is consistent and robust to a working model for the calibration function. Under exponential hazard models, there is a trade‐off between bias and efficiency when comparing RC and RRC. However, one surprising finding is that the trade‐off between bias and efficiency in measurement error research is not seen under linear hazard when the unobserved covariate is from a uniform or normal distribution. Under this situation, the RRC estimator is in general slightly better than the RC estimator in terms of both bias and efficiency. The methods are applied to the Nutritional Biomarkers Study of the Women's Health Initiative.more » « less
-
The main objective of most clinical trials is to estimate the effect of some treatment compared to a control condition. We define the signal‐to‐noise ratio (SNR) as the ratio of the true treatment effect to the SE of its estimate. In a previous publication in this journal, we estimated the distribution of the SNR among the clinical trials in the Cochrane Database of Systematic Reviews (CDSR). We found that the SNR is often low, which implies that the power against the true effect is also low in many trials. Here we use the fact that the CDSR is a collection of meta‐analyses to quantitatively assess the consequences. Among trials that have reached statistical significance we find considerable overoptimism of the usual unbiased estimator and under‐coverage of the associated confidence interval. Previously, we have proposed a novel shrinkage estimator to address this “winner's curse.” We compare the performance of our shrinkage estimator to the usual unbiased estimator in terms of the root mean squared error, the coverage and the bias of the magnitude. We find superior performance of the shrinkage estimator both conditionally and unconditionally on statistical significance.more » « less
-
Abstract When estimating a global average treatment effect (GATE) under network interference, units can have widely different relationships to the treatment depending on a combination of the structure of their network neighborhood, the structure of the interference mechanism, and how the treatment was distributed in their neighborhood. In this work, we introduce a sequential procedure to generate and select graph- and treatment-based covariates for GATE estimation under regression adjustment. We show that it is possible to simultaneously achieve low bias and considerably reduce variance with such a procedure. To tackle inferential complications caused by our feature generation and selection process, we introduce a way to construct confidence intervals based on a block bootstrap. We illustrate that our selection procedure and subsequent estimator can achieve good performance in terms of root-mean-square error in several semi-synthetic experiments with Bernoulli designs, comparing favorably to an oracle estimator that takes advantage of regression adjustments for the known underlying interference structure. We apply our method to a real-world experimental dataset with strong evidence of interference and demonstrate that it can estimate the GATE reasonably well without knowing the interference processa priori.more » « less
An official website of the United States government

