skip to main content


Title: Computational Hardness of Certifying Bounds on Constrained PCA Problems
Given a random n × n symmetric matrix 𝑾 drawn from the Gaussian orthogonal ensemble (GOE), we consider the problem of certifying an upper bound on the maximum value of the quadratic form 𝒙^⊤ 𝑾 𝒙 over all vectors 𝒙 in a constraint set 𝒮 ⊂ ℝⁿ. For a certain class of normalized constraint sets we show that, conditional on a certain complexity-theoretic conjecture, no polynomial-time algorithm can certify a better upper bound than the largest eigenvalue of 𝑾. A notable special case included in our results is the hypercube 𝒮 = {±1/√n}ⁿ, which corresponds to the problem of certifying bounds on the Hamiltonian of the Sherrington-Kirkpatrick spin glass model from statistical physics. Our results suggest a striking gap between optimization and certification for this problem. Our proof proceeds in two steps. First, we give a reduction from the detection problem in the negatively-spiked Wishart model to the above certification problem. We then give evidence that this Wishart detection problem is computationally hard below the classical spectral threshold, by showing that no low-degree polynomial can (in expectation) distinguish the spiked and unspiked models. This method for predicting computational thresholds was proposed in a sequence of recent works on the sum-of-squares hierarchy, and is conjectured to be correct for a large class of problems. Our proof can be seen as constructing a distribution over symmetric matrices that appears computationally indistinguishable from the GOE, yet is supported on matrices whose maximum quadratic form over 𝒙 ∈ 𝒮 is much larger than that of a GOE matrix.  more » « less
Award ID(s):
1712730 1719545
PAR ID:
10164438
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
11th Innovations in Theoretical Computer Science Conference (ITCS 2020)
Volume:
151
Page Range / eLocation ID:
78:1 - 78:29
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract We study the problem of efficiently refuting the k-colorability of a graph, or equivalently, certifying a lower bound on its chromatic number. We give formal evidence of average-case computational hardness for this problem in sparse random regular graphs, suggesting that there is no polynomial-time algorithm that improves upon a classical spectral algorithm. Our evidence takes the form of a "computationally-quiet planting": we construct a distribution of d-regular graphs that has significantly smaller chromatic number than a typical regular graph drawn uniformly at random, while providing evidence that these two distributions are indistinguishable by a large class of algorithms. We generalize our results to the more general problem of certifying an upper bound on the maximum k-cut. This quiet planting is achieved by minimizing the effect of the planted structure (e.g. colorings or cuts) on the graph spectrum. Specifically, the planted structure corresponds exactly to eigenvectors of the adjacency matrix. This avoids the pushout effect of random matrix theory, and delays the point at which the planting becomes visible in the spectrum or local statistics. To illustrate this further, we give similar results for a Gaussian analogue of this problem: a quiet version of the spiked model, where we plant an eigenspace rather than adding a generic low-rank perturbation. Our evidence for computational hardness of distinguishing two distributions is based on three different heuristics: stability of belief propagation, the local statistics hierarchy, and the low-degree likelihood ratio. Of independent interest, our results include general-purpose bounds on the low-degree likelihood ratio for multi-spiked matrix models, and an improved low-degree analysis of the stochastic block model. 
    more » « less
  2. We show that there is an equation of degree at most poly( n ) for the (Zariski closure of the) set of the non-rigid matrices: That is, we show that for every large enough field 𝔽, there is a non-zero n 2 -variate polynomial P ε 𝔽[ x 1, 1 , ..., x n, n ] of degree at most poly( n ) such that every matrix M that can be written as a sum of a matrix of rank at most n /100 and a matrix of sparsity at most n 2 /100 satisfies P(M) = 0. This confirms a conjecture of Gesmundo, Hauenstein, Ikenmeyer, and Landsberg [ 9 ] and improves the best upper bound known for this problem down from exp ( n 2 ) [ 9 , 12 ] to poly( n ). We also show a similar polynomial degree bound for the (Zariski closure of the) set of all matrices M such that the linear transformation represented by M can be computed by an algebraic circuit with at most n 2 /200 edges (without any restriction on the depth). As far as we are aware, no such bound was known prior to this work when the depth of the circuits is unbounded. Our methods are elementary and short and rely on a polynomial map of Shpilka and Volkovich [ 21 ] to construct low-degree “universal” maps for non-rigid matrices and small linear circuits. Combining this construction with a simple dimension counting argument to show that any such polynomial map has a low-degree annihilating polynomial completes the proof. As a corollary, we show that any derandomization of the polynomial identity testing problem will imply new circuit lower bounds. A similar (but incomparable) theorem was proved by Kabanets and Impagliazzo [ 11 ]. 
    more » « less
  3. We give two new quantum algorithms for solving semidefinite programs (SDPs) providing quantum speed-ups. We consider SDP instances with m constraint matrices, each of dimension n, rank at most r, and sparsity s. The first algorithm assumes an input model where one is given access to an oracle to the entries of the matrices at unit cost. We show that it has run time O~(s^2 (sqrt{m} epsilon^{-10} + sqrt{n} epsilon^{-12})), with epsilon the error of the solution. This gives an optimal dependence in terms of m, n and quadratic improvement over previous quantum algorithms (when m ~~ n). The second algorithm assumes a fully quantum input model in which the input matrices are given as quantum states. We show that its run time is O~(sqrt{m}+poly(r))*poly(log m,log n,B,epsilon^{-1}), with B an upper bound on the trace-norm of all input matrices. In particular the complexity depends only polylogarithmically in n and polynomially in r. We apply the second SDP solver to learn a good description of a quantum state with respect to a set of measurements: Given m measurements and a supply of copies of an unknown state rho with rank at most r, we show we can find in time sqrt{m}*poly(log m,log n,r,epsilon^{-1}) a description of the state as a quantum circuit preparing a density matrix which has the same expectation values as rho on the m measurements, up to error epsilon. The density matrix obtained is an approximation to the maximum entropy state consistent with the measurement data considered in Jaynes' principle from statistical mechanics. As in previous work, we obtain our algorithm by "quantizing" classical SDP solvers based on the matrix multiplicative weight update method. One of our main technical contributions is a quantum Gibbs state sampler for low-rank Hamiltonians, given quantum states encoding these Hamiltonians, with a poly-logarithmic dependence on its dimension, which is based on ideas developed in quantum principal component analysis. We also develop a "fast" quantum OR lemma with a quadratic improvement in gate complexity over the construction of Harrow et al. [Harrow et al., 2017]. We believe both techniques might be of independent interest. 
    more » « less
  4. Barman, Siddharth ; Lasota, Sławomir (Ed.)
    We consider the problem of estimating the size of a maximum matching in low-arboricity graphs in the dynamic graph stream model. In this setting, an algorithm with limited memory makes multiple passes over a stream of edge insertions and deletions, resulting in a low-arboricity graph. Let n be the number of vertices of the input graph, and α be its arboricity. We give the following results. 1) As our main result, we give a three-pass streaming algorithm that produces an (α + 2)(1 + ε)-approximation and uses space O(ε^{-2}⋅α²⋅n^{1/2}⋅log n). This result should be contrasted with the Ω(α^{-5/2}⋅n^{1/2}) space lower bound established by [Assadi et al., SODA'17] for one-pass algorithms, showing that, for graphs of constant arboricity, the one-pass space lower bound can be achieved in three passes (up to poly-logarithmic factors). Furthermore, we obtain a two-pass algorithm that uses space O(ε^{-2}⋅α²⋅n^{3/5}⋅log n). 2) We also give a (1+ε)-approximation multi-pass algorithm, where the space used is parameterized by an upper bound on the size of a largest matching. For example, using O(log log n) passes, the space required is O(ε^{-1}⋅α²⋅k⋅log n), where k denotes an upper bound on the size of a largest matching. Finally, we define a notion of arboricity in the context of matrices. This is a natural measure of the sparsity of a matrix that is more nuanced than simply bounding the total number of nonzero entries, but less restrictive than bounding the number of nonzero entries in each row and column. For such matrices, we exploit our results on estimating matching size to present upper bounds for the problem of rank estimation in the dynamic data stream model. 
    more » « less
  5. The distance matrix of a dataset X of n points with respect to a distance function f represents all pairwise distances between points in X induced by f. Due to their wide applicability, distance matrices and related families of matrices have been the focus of many recent algorithmic works. We continue this line of research and take a broad view of algorithm design for distance matrices with the goal of designing fast algorithms, which are specifically tailored for distance matrices, for fundamental linear algebraic primitives. Our results include efficient algorithms for computing matrix-vector products for a wide class of distance matrices, such as the l1 metric for which we get a linear runtime, as well as a quadratic lower bound for any algorithm which computes a matrix-vector product for the l_infty case. Our upper bound results have many further downstream applications, including the fastest algorithm for computing a relative error low-rank approximation for the distance matrix induced by l1 and l2 functions and the fastest algorithm for computing an additive error lowrank approximation for the l2 metric, in addition to applications for fast matrix multiplication among others. We also give algorithms for constructing distance matrices and show that one can construct an approximate l2 distance matrix in time faster than the bound implied by the Johnson-Lindenstrauss lemma. 
    more » « less