skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Pixel-Attentive Policy Gradient for Multi-Fingered Grasping in Cluttered Scenes
Recent advances in on-policy reinforcement learning (RL) methods enabled learning agents in virtual environments to master complex tasks with high-dimensional and continuous observation and action spaces. However, leveraging this family of algorithms in multi-fingered robotic grasping remains a challenge due to large sim-to-real fidelity gaps and the high sample complexity of on-policy RL algorithms. This work aims to bridge these gaps by first reinforcement-learning a multi-fingered robotic grasping policy in simulation that operates in the pixel space of the input: a single depth image. Using a mapping from pixel space to Cartesian space according to the depth map, this method transfers to the real world with high fidelity and introduces a novel attention mechanism that substantially improves grasp success rate in cluttered environments. Finally, the direct-generative nature of this method allows learning of multi-fingered grasps that have flexible end-effector positions, orientations and rotations, as well as all degrees of freedom of the hand.  more » « less
Award ID(s):
1734557
PAR ID:
10164439
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
Page Range / eLocation ID:
1789 to 1796
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Generative Attention Learning (GenerAL) is a framework for high-DOF multi-fingered grasping that is not only robust to dense clutter and novel objects but also effective with a variety of different parallel-jaw and multi-fingered robot hands. This framework introduces a novel attention mechanism that substantially improves the grasp success rate in clutter. Its generative nature allows the learning of full-DOF grasps with flexible end-effector positions and orientations, as well as all finger joint angles of the hand. Trained purely in simulation, this framework skillfully closes the sim-to-real gap. To close the visual sim-to-real gap, this framework uses a single depth image as input. To close the dynamics sim-to-real gap, this framework circumvents continuous motor control with a direct mapping from pixel to Cartesian space inferred from the same depth image. Finally, this framework demonstrates inter-robot generality by achieving over 92% real-world grasp success rates in cluttered scenes with novel objects using two multi-fingered robotic hand-arm systems with different degrees of freedom. 
    more » « less
  2. State-of-the-art human-in-the-loop robot grasping is hugely suffered by Electromyography (EMG) inference robustness issues. As a workaround, researchers have been looking into integrating EMG with other signals, often in an ad hoc manner. In this paper, we are presenting a method for end-to-end training of a policy for human-in-the-loop robot grasping on real reaching trajectories. For this purpose we use Reinforcement Learning (RL) and Imitation Learning (IL) in DEXTRON (DEXTerity enviRONment), a stochastic simulation environment with real human trajectories that are augmented and selected using a Monte Carlo (MC) simulation method. We also offer a success model which once trained on the expert policy data and the RL policy roll-out transitions, can provide transparency to how the deep policy works and when it is probably going to fail. 
    more » « less
  3. A long-standing question in robot hand design is how accurate tactile sensing must be. This paper uses simulated tactile signals and the reinforcement learning (RL) framework to study the sensing needs in grasping systems. Our first experiment investigates the need for rich tactile sensing in the rewards of RL-based grasp refinement algorithms for multi-fingered robotic hands. We systematically integrate different levels of tactile data into the rewards using analytic grasp stability metrics. We find that combining information on contact positions, normals, and forces in the reward yields the highest average success rates of 95.4% for cuboids, 93.1% for cylinders, and 62.3% for spheres across wrist position errors between 0 and 7 centimeters and rotational errors between 0 and 14 degrees. This contact-based reward outperforms a non-tactile binary-reward baseline by 42.9%. Our follow-up experiment shows that when training with tactile-enabled rewards, the use of tactile information in the control policy’s state vector is drastically reducible at only a slight performance decrease of at most 6.6% for no tactile sensing in the state. Since policies do not require access to the reward signal at test time, our work implies that models trained on tactile-enabled hands are deployable to robotic hands with a smaller sensor suite, potentially reducing cost dramatically. 
    more » « less
  4. Chaudhuri, Kamalika; Jegelka, Stefanie; Song, Le; Szepesvari, Csaba; Niu, Gang; Sabato, Sivan (Ed.)
    Reinforcement learning (RL) has demonstrated remarkable achievements in simulated environments. However, carrying this success to real environments requires the important attribute of robustness, which the existing RL algorithms often lack as they assume that the future deployment environment is the same as the training environment (i.e. simulator) in which the policy is learned. This assumption often does not hold due to the discrepancy between the simulator and the real environment and, as a result, and hence renders the learned policy fragile when deployed. In this paper, we propose a novel distributionally robust Q-learning algorithm that learns the best policy in the worst distributional perturbation of the environment. Our algorithm first transforms the infinite-dimensional learning problem (since the environment MDP perturbation lies in an infinite-dimensional space) into a finite-dimensional dual problem and subsequently uses a multi-level Monte-Carlo scheme to approximate the dual value using samples from the simulator. Despite the complexity, we show that the resulting distributionally robust Q-learning algorithm asymptotically converges to optimal worst-case policy, thus making it robust to future environment changes. Simulation results further demonstrate its strong empirical robustness. 
    more » « less
  5. There has been significant recent work on data-driven algorithms for learning general-purpose grasping policies. However, these policies can consis- tently fail to grasp challenging objects which are significantly out of the distribution of objects in the training data or which have very few high quality grasps. Moti- vated by such objects, we propose a novel problem setting, Exploratory Grasping, for efficiently discovering reliable grasps on an unknown polyhedral object via sequential grasping, releasing, and toppling. We formalize Exploratory Grasping as a Markov Decision Process where we assume that the robot can (1) distinguish stable poses of a polyhedral object of unknown geometry, (2) generate grasp can- didates on these poses and execute them, (3) determine whether each grasp is successful, and (4) release the object into a random new pose after a grasp success or topple the object after a grasp failure. We study the theoretical complexity of Exploratory Grasping in the context of reinforcement learning and present an efficient bandit-style algorithm, Bandits for Online Rapid Grasp Exploration Strategy (BORGES), which leverages the structure of the problem to efficiently discover high performing grasps for each object stable pose. BORGES can be used to complement any general-purpose grasping algorithm with any grasp modality (parallel-jaw, suction, multi-fingered, etc) to learn policies for objects in which they exhibit persistent failures. Simulation experiments suggest that BORGES can significantly outperform both general-purpose grasping pipelines and two other online learning algorithms and achieves performance within 5% of the optimal policy within 1000 and 8000 timesteps on average across 46 challenging objects from the Dex-Net adversarial and EGAD! object datasets, respectively. Initial physical experiments suggest that BORGES can improve grasp success rate by 45% over a Dex-Net baseline with just 200 grasp attempts in the real world. See https://tinyurl.com/exp-grasping for supplementary material and videos. 
    more » « less