Vacuum-based end effectors are widely used in in- dustry and are often preferred over parallel-jaw and multifinger grippers due to their ability to lift objects with a single point of contact. Suction grasp planners often target planar surfaces on point clouds near the estimated centroid of an object. In this paper, we propose a compliant suction contact model that computes the quality of the seal between the suction cup and local target surface and a measure of the ability of the suction grasp to resist an external gravity wrench. To characterize grasps, we estimate robustness to perturbations in end-effector andmore »
Exploratory Grasping: Asymptotically Optimal Algorithms for Grasping Challenging Polyhedral Objects
There has been significant recent work on data-driven algorithms for learning general-purpose grasping policies. However, these policies can consis- tently fail to grasp challenging objects which are significantly out of the distribution of objects in the training data or which have very few high quality grasps. Moti- vated by such objects, we propose a novel problem setting, Exploratory Grasping, for efficiently discovering reliable grasps on an unknown polyhedral object via sequential grasping, releasing, and toppling. We formalize Exploratory Grasping as a Markov Decision Process where we assume that the robot can (1) distinguish stable poses of a polyhedral object of unknown geometry, (2) generate grasp can- didates on these poses and execute them, (3) determine whether each grasp is successful, and (4) release the object into a random new pose after a grasp success or topple the object after a grasp failure. We study the theoretical complexity of Exploratory Grasping in the context of reinforcement learning and present an efficient bandit-style algorithm, Bandits for Online Rapid Grasp Exploration Strategy (BORGES), which leverages the structure of the problem to efficiently discover high performing grasps for each object stable pose. BORGES can be used to complement any general-purpose grasping algorithm with any more »
- Award ID(s):
- 1734633
- Publication Date:
- NSF-PAR ID:
- 10314362
- Journal Name:
- 4th Conference on Robot Learning
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
In this paper we define two feature representations for grasping. These representations capture hand-object geometric relationships at the near-contact stage - before the fingers close around the object. Their benefits are: 1) They are stable under noise in both joint and pose variation. 2) They are largely hand and object agnostic, enabling direct comparison across different hand morphologies. 3) Their format makes them suitable for direct application of machine learning techniques developed for images. We validate the representations by: 1) Demonstrating that they can accurately predict the distribution of ε-metric values generated by kinematic noise. I.e., they capture much ofmore »
-
Robotic grasping is successful when a robot can sense and grasp an object without letting it slip. Beyond industrial robotic tasks, there are two main robotic grasping methods. The first is planning-based grasping where the object geometry is known beforehand and stable grasps are calculated using algorithms [1]. The second uses tactile feedback. Currently, there are capacitive sensors placed beneath stiff pads on the front of robotic fingers [2]. With post-execution grasp adjustment procedures to estimate grasp stability, a support vector machine classifier can distinguish stable and unstable grasps. The accuracy across the classes of tested objects is 81% [1].more »
-
Recent results suggest that it is possible to grasp a variety of singu- lated objects with high precision using Convolutional Neural Networks (CNNs) trained on synthetic data. This paper considers the task of bin picking, where multiple objects are randomly arranged in a heap and the objective is to sequen- tially grasp and transport each into a packing box. We model bin picking with a discrete-time Partially Observable Markov Decision Process that specifies states of the heap, point cloud observations, and rewards. We collect synthetic demon- strations of bin picking from an algorithmic supervisor uses full state information to optimizemore »
-
Generative Attention Learning (GenerAL) is a framework for high-DOF multi-fingered grasping that is not only robust to dense clutter and novel objects but also effective with a variety of different parallel-jaw and multi-fingered robot hands. This framework introduces a novel attention mechanism that substantially improves the grasp success rate in clutter. Its generative nature allows the learning of full-DOF grasps with flexible end-effector positions and orientations, as well as all finger joint angles of the hand. Trained purely in simulation, this framework skillfully closes the sim-to-real gap. To close the visual sim-to-real gap, this framework uses a single depth imagemore »