skip to main content


Title: Spectral methods from tensor networks
A tensor network is a diagram that specifies a way to "multiply" a collection of tensors together to produce another tensor (or matrix). Many existing algorithms for tensor problems (such as tensor decomposition and tensor PCA), although they are not presented this way, can be viewed as spectral methods on matrices built from simple tensor networks. In this work we leverage the full power of this abstraction to design new algorithms for certain continuous tensor decomposition problems. An important and challenging family of tensor problems comes from orbit recovery, a class of inference problems involving group actions (inspired by applications such as cryo-electron microscopy). Orbit recovery problems over finite groups can often be solved via standard tensor methods. However, for infinite groups, no general algorithms are known. We give a new spectral algorithm based on tensor networks for one such problem: continuous multi-reference alignment over the infinite group SO(2). Our algorithm extends to the more general heterogeneous case.  more » « less
Award ID(s):
1712730
PAR ID:
10164484
Author(s) / Creator(s):
;
Date Published:
Journal Name:
51st Annual ACM SIGACT Symposium on Theory of Computing (STOC 2019)
Page Range / eLocation ID:
926 to 937
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Guruswami, Venkatesan (Ed.)
    We study the complexity of isomorphism problems for d-way arrays, or tensors, under natural actions by classical groups such as orthogonal, unitary, and symplectic groups. These problems arise naturally in statistical data analysis and quantum information. We study two types of complexity-theoretic questions. First, for a fixed action type (isomorphism, conjugacy, etc.), we relate the complexity of the isomorphism problem over a classical group to that over the general linear group. Second, for a fixed group type (orthogonal, unitary, or symplectic), we compare the complexity of the isomorphism problems for different actions. Our main results are as follows. First, for orthogonal and symplectic groups acting on 3-way arrays, the isomorphism problems reduce to the corresponding problems over the general linear group. Second, for orthogonal and unitary groups, the isomorphism problems of five natural actions on 3-way arrays are polynomial-time equivalent, and the d-tensor isomorphism problem reduces to the 3-tensor isomorphism problem for any fixed d >= 3. For unitary groups, the preceding result implies that LOCC classification of tripartite quantum states is at least as difficult as LOCC classification of d-partite quantum states for any d. Lastly, we also show that the graph isomorphism problem reduces to the tensor isomorphism problem over orthogonal and unitary groups. 
    more » « less
  2. null (Ed.)
    We give new and efficient black-box reconstruction algorithms for some classes of depth-3 arithmetic circuits. As a consequence, we obtain the first efficient algorithm for computing the tensor rank and for finding the optimal tensor decomposition as a sum of rank-one tensors when then input is a constant-rank tensor. More specifically, we provide efficient learning algorithms that run in randomized polynomial time over general fields and in deterministic polynomial time over and for the following classes: 1) Set-multilinear depth-3 circuits of constant top fan-in ((k) circuits). As a consequence of our algorithm, we obtain the first polynomial time algorithm for tensor rank computation and optimal tensor decomposition of constant-rank tensors. This result holds for d dimensional tensors for any d, but is interesting even for d=3. 2) Sums of powers of constantly many linear forms ((k) circuits). As a consequence we obtain the first polynomial-time algorithm for tensor rank computation and optimal tensor decomposition of constant-rank symmetric tensors. 3) Multilinear depth-3 circuits of constant top fan-in (multilinear (k) circuits). Our algorithm works over all fields of characteristic 0 or large enough characteristic. Prior to our work the only efficient algorithms known were over polynomially-sized finite fields (see. Karnin-Shpilka 09’). Prior to our work, the only polynomial-time or even subexponential-time algorithms known (deterministic or randomized) for subclasses of (k) circuits that also work over large/infinite fields were for the setting when the top fan-in k is at most 2 (see Sinha 16’ and Sinha 20’). 
    more » « less
  3. The CP tensor decomposition is used in applications such as machine learning and signal processing to discover latent low-rank structure in multidimensional data. Computing a CP decomposition via an alternating least squares (ALS) method reduces the problem to several linear least squares problems. The standard way to solve these linear least squares subproblems is to use the normal equations, which inherit special tensor structure that can be exploited for computational efficiency. However, the normal equations are sensitive to numerical ill-conditioning, which can compromise the results of the decomposition. In this paper, we develop versions of the CP-ALS algorithm using the QR decomposition and the singular value decomposition, which are more numerically stable than the normal equations, to solve the linear least squares problems. Our algorithms utilize the tensor structure of the CP-ALS subproblems efficiently, have the same complexity as the standard CP-ALS algorithm when the input is dense and the rank is small, and are shown via examples to produce more stable results when ill-conditioning is present. Our MATLAB implementation achieves the same running time as the standard algorithm for small ranks, and we show that the new methods can obtain lower approximation error. 
    more » « less
  4. Higher-order tensors have received increased attention across science and engineering. While most tensor decomposition methods are developed for a single tensor observation, scientific studies often collect side information, in the form of node features and interactions thereof, together with the tensor data. Such data problems are common in neuroimaging, network analysis, and spatial-temporal modeling. Identifying the relationship between a high-dimensional tensor and side information is important yet challenging. Here, we develop a tensor decomposition method that incorporates multiple feature matrices as side information. Unlike unsupervised tensor decomposition, our supervised decomposition captures the effective dimension reduction of the data tensor confined to feature space of interest. An efficient alternating optimization algorithm with provable spectral initialization is further developed. Our proposal handles a broad range of data types, including continuous, count, and binary observations. We apply the method to diffusion tensor imaging data from human connectome project and multi-relational political network data. We identify the key global connectivity pattern and pinpoint the local regions that are associated with available features. The package and data used are available at https://CRAN.R-project.org/package=tensorregress. Supplementary materials for this article are available online. 
    more » « less
  5. null (Ed.)
    Abstract Higher-order tensors can represent scores in a rating system, frames in a video, and images of the same subject. In practice, the measurements are often highly quantized due to the sampling strategies or the quality of devices. Existing works on tensor recovery have focused on data losses and random noises. Only a few works consider tensor recovery from quantized measurements but are restricted to binary measurements. This paper, for the first time, addresses the problem of tensor recovery from multi-level quantized measurements by leveraging the low CANDECOMP/PARAFAC (CP) rank property. We study the recovery of both general low-rank tensors and tensors that have tensor singular value decomposition (TSVD) by solving nonconvex optimization problems. We provide the theoretical upper bounds of the recovery error, which diminish to zero when the sizes of dimensions increase to infinity. We further characterize the fundamental limit of any recovery algorithm and show that our recovery error is nearly order-wise optimal. A tensor-based alternating proximal gradient descent algorithm with a convergence guarantee and a TSVD-based projected gradient descent algorithm are proposed to solve the nonconvex problems. Our recovery methods can also handle data losses and do not necessarily need the information of the quantization rule. The methods are validated on synthetic data, image datasets, and music recommender datasets. 
    more » « less