Principal Components Analysis (PCA) is a dimension-reduction technique widely used in machine learning and statistics. However, due to the dependence of the principal components on all the dimensions, the components are notoriously hard to interpret. Therefore, a variant known as sparse PCA is often preferred. Sparse PCA learns principal components of the data but enforces that such components must be sparse. This has applications in diverse fields such as computational biology and image processing. To learn sparse principal components, it’s well known that standard PCA will not work, especially in high dimensions, and therefore algorithms for sparse PCA are often studied as a separate endeavor. Various algorithms have been proposed for Sparse PCA over the years, but given how fundamental it is for applications in science, the limits of efficient algorithms are only partially understood. In this work, we study the limits of the powerful Sum of Squares (SoS) family of algorithms for Sparse PCA. SoS algorithms have recently revolutionized robust statistics, leading to breakthrough algorithms for long-standing open problems in machine learning, such as optimally learning mixtures of gaussians, robust clustering, robust regression, etc. Moreover, it is believed to be the optimal robust algorithm for many statistical problems. Therefore, for sparse PCA, it’s plausible that it can beat simpler algorithms such as diagonal thresholding that have been traditionally used. In this work, we show that this is not the case, by exhibiting strong tradeoffs between the number of samples required, the sparsity and the ambient dimension, for which SoS algorithms, even if allowed sub-exponential time, will fail to optimally recover the component. Our results are complemented by known algorithms in literature, thereby painting an almost complete picture of the behavior of efficient algorithms for sparse PCA. Since SoS algorithms encapsulate many algorithmic techniques such as spectral or statistical query algorithms, this solidifies the message that known algorithms are optimal for sparse PCA. Moreover, our techniques are strong enough to obtain similar tradeoffs for Tensor PCA, another important higher order variant of PCA with applications in topic modeling, video processing, etc.
more »
« less
The Kikuchi Hierarchy and Tensor PCA
For the tensor PCA (principal component analysis) problem, we propose a new hierarchy of increasingly powerful algorithms with increasing runtime. Our hierarchy is analogous to the sumof-squares (SOS) hierarchy but is instead inspired by statistical physics and related algorithms such as belief propagation and AMP (approximate message passing). Our level-ℓ algorithm can be thought of as a linearized message-passing algorithm that keeps track of ℓ-wise dependencies among the hidden variables. Specifically, our algorithms are spectral methods based on the Kikuchi Hessian, which generalizes the well-studied Bethe Hessian to the higher-order Kikuchi free energies. It is known that AMP, the flagship algorithm of statistical physics, has substantially worse performance than SOS for tensor PCA. In this work we ‘redeem’ the statistical physics approach by showing that our hierarchy gives a polynomial-time algorithm matching the performance of SOS. Our hierarchy also yields a continuum of subexponential-time algorithms, and we prove that these achieve the same (conjecturally optimal) tradeoff between runtime and statistical power as SOS. Our proofs are much simpler than prior work, and also apply to the related problem of refuting random k-XOR formulas. The results we present here apply to tensor PCA for tensors of all orders, and to k-XOR when k is even. Our methods suggest a new avenue for systematically obtaining optimal algorithms for Bayesian inference problems, and our results constitute a step toward unifying the statistical physics and sum-of-squares approaches to algorithm design.
more »
« less
- PAR ID:
- 10164516
- Date Published:
- Journal Name:
- 2019 IEEE 60th Annual Symposium on Foundations of Computer Science (FOCS)
- Page Range / eLocation ID:
- 1446 to 1468
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract When the dimension of data is comparable to or larger than the number of data samples, principal components analysis (PCA) may exhibit problematic high-dimensional noise. In this work, we propose an empirical Bayes PCA method that reduces this noise by estimating a joint prior distribution for the principal components. EB-PCA is based on the classical Kiefer–Wolfowitz non-parametric maximum likelihood estimator for empirical Bayes estimation, distributional results derived from random matrix theory for the sample PCs and iterative refinement using an approximate message passing (AMP) algorithm. In theoretical ‘spiked’ models, EB-PCA achieves Bayes-optimal estimation accuracy in the same settings as an oracle Bayes AMP procedure that knows the true priors. Empirically, EB-PCA significantly improves over PCA when there is strong prior structure, both in simulation and on quantitative benchmarks constructed from the 1000 Genomes Project and the International HapMap Project. An illustration is presented for analysis of gene expression data obtained by single-cell RNA-seq.more » « less
-
Abstract We study a class of Approximate Message Passing (AMP) algorithms for symmetric and rectangular spiked random matrix models with orthogonally invariant noise. The AMP iterates have fixed dimension $$K \geq 1$$, a multivariate non-linearity is applied in each AMP iteration, and the algorithm is spectrally initialized with $$K$$ super-critical sample eigenvectors. We derive the forms of the Onsager debiasing coefficients and corresponding AMP state evolution, which depend on the free cumulants of the noise spectral distribution. This extends previous results for such models with $K=1$ and an independent initialization. Applying this approach to Bayesian principal components analysis, we introduce a Bayes-OAMP algorithm that uses as its non-linearity the posterior mean conditional on all preceding AMP iterates. We describe a practical implementation of this algorithm, where all debiasing and state evolution parameters are estimated from the observed data, and we illustrate the accuracy and stability of this approach in simulations.more » « less
-
Clustering is a fundamental primitive in unsupervised learning which gives rise to a rich class of computationally-challenging inference tasks. In this work, we focus on the canonical task of clustering d-dimensional Gaussian mixtures with unknown (and possibly degenerate) covariance. Recent works (Ghosh et al. ’20; Mao, Wein ’21; Davis, Diaz, Wang ’21) have established lower bounds against the class of low-degree polynomial methods and the sum-of-squares (SoS) hierarchy for recovering certain hidden structures planted in Gaussian clustering instances. Prior work on many similar inference tasks portends that such lower bounds strongly suggest the presence of an inherent statistical-to-computational gap for clustering, that is, a parameter regime where the clustering task is statistically possible but no polynomial-time algorithm succeeds. One special case of the clustering task we consider is equivalent to the problem of finding a planted hypercube vector in an otherwise random subspace. We show that, perhaps surprisingly, this particular clustering model does not exhibit a statistical-to-computational gap, despite the aforementioned low-degree and SoS lower bounds. To achieve this, we give an algorithm based on Lenstra–Lenstra–Lovász lattice basis reduction which achieves the statistically-optimal sample complexity of d + 1 samples. This result extends the class of problems whose conjectured statistical-to-computational gaps can be “closed” by “brittle” polynomial-time algorithms, highlighting the crucial but subtle role of noise in the onset of statistical-to-computational gaps.more » « less
-
null (Ed.)The Gilbert–Varshamov bound non-constructively establishes the existence of binary codes of distance 1/2−є/2 and rate Ω(є2). In a breakthrough result, Ta-Shma [STOC 2017] constructed the first explicit family of nearly optimal binary codes with distance 1/2−є/2 and rate Ω(є2+α), where α → 0 as є → 0. Moreover, the codes in Ta-Shma’s construction are є-balanced, where the distance between distinct codewords is not only bounded from below by 1/2−є/2, but also from above by 1/2+є/2. Polynomial time decoding algorithms for (a slight modification of) Ta-Shma’s codes appeared in [FOCS 2020], and were based on the Sum-of-Squares (SoS) semidefinite programming hierarchy. The running times for these algorithms were of the form NOα(1) for unique decoding, and NOє,α(1) for the setting of “gentle list decoding”, with large exponents of N even when α is a fixed constant. We derive new algorithms for both these tasks, running in time Õє(N). Our algorithms also apply to the general setting of decoding direct-sum codes. Our algorithms follow from new structural and algorithmic results for collections of k-tuples (ordered hypergraphs) possessing a “structured expansion” property, which we call splittability. This property was previously identified and used in the analysis of SoS-based decoding and constraint satisfaction algorithms, and is also known to be satisfied by Ta-Shma’s code construction. We obtain a new weak regularity decomposition for (possibly sparse) splittable collections W ⊆ [n]k, similar to the regularity decomposition for dense structures by Frieze and Kannan [FOCS 1996]. These decompositions are also computable in near-linear time Õ(|W |), and form a key component of our algorithmic results.more » « less
An official website of the United States government

