Single-Index Models are high-dimensional regression problems with planted structure, whereby labels depend on an unknown one-dimensional projection of the input via a generic, non-linear, and potentially non-deterministic transformation. As such, they encompass a broad class of statistical inference tasks, and provide a rich template to study statistical and computational trade-offs in the high-dimensional regime. While the information-theoretic sample complexity to recover the hidden direction is lin- ear in the dimension d, we show that computationally efficient algorithms, both within the Statistical Query (SQ) and the Low-Degree Polynomial (LDP) framework, necessarily require Ω(dk⋆/2) samples, where k⋆ is a “generative” exponent associated with the model that we explicitly characterize. Moreover, we show that this sample complexity is also sufficient, by establishing matching upper bounds using a partial-trace algorithm. Therefore, our results pro- vide evidence of a sharp computational-to-statistical gap (under both the SQ and LDP class) whenever k⋆ > 2. To complete the study, we construct smooth and Lipschitz deterministic target functions with arbitrarily large generative exponents k⋆.
more »
« less
Lattice-Based Methods Surpass Sum-of-Squares in Clustering
Clustering is a fundamental primitive in unsupervised learning which gives rise to a rich class of computationally-challenging inference tasks. In this work, we focus on the canonical task of clustering d-dimensional Gaussian mixtures with unknown (and possibly degenerate) covariance. Recent works (Ghosh et al. ’20; Mao, Wein ’21; Davis, Diaz, Wang ’21) have established lower bounds against the class of low-degree polynomial methods and the sum-of-squares (SoS) hierarchy for recovering certain hidden structures planted in Gaussian clustering instances. Prior work on many similar inference tasks portends that such lower bounds strongly suggest the presence of an inherent statistical-to-computational gap for clustering, that is, a parameter regime where the clustering task is statistically possible but no polynomial-time algorithm succeeds. One special case of the clustering task we consider is equivalent to the problem of finding a planted hypercube vector in an otherwise random subspace. We show that, perhaps surprisingly, this particular clustering model does not exhibit a statistical-to-computational gap, despite the aforementioned low-degree and SoS lower bounds. To achieve this, we give an algorithm based on Lenstra–Lenstra–Lovász lattice basis reduction which achieves the statistically-optimal sample complexity of d + 1 samples. This result extends the class of problems whose conjectured statistical-to-computational gaps can be “closed” by “brittle” polynomial-time algorithms, highlighting the crucial but subtle role of noise in the onset of statistical-to-computational gaps.
more »
« less
- PAR ID:
- 10329471
- Date Published:
- Journal Name:
- conference on learning theory
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abernethy, Jacob; Agarwal, Shivani (Ed.)We study a variant of the sparse PCA (principal component analysis) problem in the “hard” regime, where the inference task is possible yet no polynomial-time algorithm is known to exist. Prior work, based on the low-degree likelihood ratio, has conjectured a precise expression for the best possible (sub-exponential) runtime throughout the hard regime. Following instead a statistical physics inspired point of view, we show bounds on the depth of free energy wells for various Gibbs measures naturally associated to the problem. These free energy wells imply hitting time lower bounds that corroborate the low-degree conjecture: we show that a class of natural MCMC (Markov chain Monte Carlo) methods (with worst-case initialization) cannot solve sparse PCA with less than the conjectured runtime. These lower bounds apply to a wide range of values for two tuning parameters: temperature and sparsity misparametrization. Finally, we prove that the Overlap Gap Property (OGP), a structural property that implies failure of certain local search algorithms, holds in a significant part of the hard regime.more » « less
-
Given a graph and an integer k, Densest k-Subgraph is the algorithmic task of finding the subgraph on k vertices with the maximum number of edges. This is a fundamental problem that has been subject to intense study for decades, with applications spanning a wide variety of fields. The state-of-the-art algorithm is an O(n^{1/4+ϵ})-factor approximation (for any ϵ>0) due to Bhaskara et al. [STOC '10]. Moreover, the so-called log-density framework predicts that this is optimal, i.e. it is impossible for an efficient algorithm to achieve an O(n^{1/4−ϵ})-factor approximation. In the average case, Densest k-Subgraph is a prototypical noisy inference task which is conjectured to exhibit a statistical-computational gap. In this work, we provide the strongest evidence yet of hardness for Densest k-Subgraph by showing matching lower bounds against the powerful Sum-of-Squares (SoS) algorithm, a meta-algorithm based on convex programming that achieves state-of-art algorithmic guarantees for many optimization and inference problems. For k ≤ n^1/2, we obtain a degree n^δ SoS lower bound for the hard regime as predicted by the log-density framework. To show this, we utilize the modern framework for proving SoS lower bounds on average-case problems pioneered by Barak et al. [FOCS '16]. A key issue is that small denser-than-average subgraphs in the input will greatly affect the value of the candidate pseudo-expectation operator around the subgraph. To handle this challenge, we devise a novel matrix factorization scheme based on the positive minimum vertex separator. We then prove an intersection tradeoff lemma to show that the error terms when using this separator are indeed small.more » « less
-
Planted Dense Subgraph (PDS) problem is a prototypical problem with a computational-statistical gap. It also exhibits an intriguing additional phenomenon: different tasks, such as detection or re- covery, appear to have different computational limits. A detection-recovery gap for PDS was sub- stantiated in the form of a precise conjecture given by Chen and Xu (2014) (based on the parameter values for which a convexified MLE succeeds), and then shown to hold for low-degree polynomial algorithms by Schramm and Wein (2022) and for MCMC algorithms for Ben Arous et al. (2020). In this paper we demonstrate that a slight variation of the Planted Clique Hypothesis with secret leakage (introduced in Brennan and Bresler (2020)), implies a detection-recovery gap for PDS. In the same vein, we also obtain a sharp lower bound for refutation, yielding a detection-refutation gap. Our methods build on the framework of Brennan and Bresler (2020) to construct average-case reductions mapping secret leakage Planted Clique to appropriate target problems.more » « less
-
null (Ed.)Abstract We study the problem of efficiently refuting the k-colorability of a graph, or equivalently, certifying a lower bound on its chromatic number. We give formal evidence of average-case computational hardness for this problem in sparse random regular graphs, suggesting that there is no polynomial-time algorithm that improves upon a classical spectral algorithm. Our evidence takes the form of a "computationally-quiet planting": we construct a distribution of d-regular graphs that has significantly smaller chromatic number than a typical regular graph drawn uniformly at random, while providing evidence that these two distributions are indistinguishable by a large class of algorithms. We generalize our results to the more general problem of certifying an upper bound on the maximum k-cut. This quiet planting is achieved by minimizing the effect of the planted structure (e.g. colorings or cuts) on the graph spectrum. Specifically, the planted structure corresponds exactly to eigenvectors of the adjacency matrix. This avoids the pushout effect of random matrix theory, and delays the point at which the planting becomes visible in the spectrum or local statistics. To illustrate this further, we give similar results for a Gaussian analogue of this problem: a quiet version of the spiked model, where we plant an eigenspace rather than adding a generic low-rank perturbation. Our evidence for computational hardness of distinguishing two distributions is based on three different heuristics: stability of belief propagation, the local statistics hierarchy, and the low-degree likelihood ratio. Of independent interest, our results include general-purpose bounds on the low-degree likelihood ratio for multi-spiked matrix models, and an improved low-degree analysis of the stochastic block model.more » « less