On the Hardness and Inapproximability of Recognizing Wheeler Graphs
In recent years several compressed indexes based on variants of the Burrows-Wheeler transformation have been introduced. Some of these are used to index structures far more complex than a single string, as was originally done with the FM-index [Ferragina and Manzini, J. ACM 2005]. As such, there has been an increasing effort to better understand under which conditions such an indexing scheme is possible. This has led to the introduction of Wheeler graphs [Gagie et al., Theor. Comput. Sci., 2017]. Gagie et al. showed that de Bruijn graphs, generalized compressed suffix arrays, and several other BWT related structures can be represented as Wheeler graphs and that Wheeler graphs can be indexed in a way which is space-efficient. Hence, being able to recognize whether a given graph is a Wheeler graph, or being able to approximate a given graph by a Wheeler graph, could have numerous applications in indexing. Here we resolve the open question of whether there exists an efficient algorithm for recognizing if a given graph is a Wheeler graph. We present - The problem of recognizing whether a given graph G=(V,E) is a Wheeler graph is NP-complete for any edge label alphabet of size sigma >= 2, even when G is a DAG. This holds even on a restricted, subset of graphs called d-NFA's for d >= 5. This is in contrast to recent results demonstrating the problem can be solved in polynomial time for d-NFA's where d <= 2. We also show the recognition problem can be solved in linear time for sigma =1; - There exists an 2^{e log sigma + O(n + e)} time exact algorithm where n = |V| and e = |E|. This algorithm relies on graph isomorphism being computable in strictly sub-exponential time; - We define an optimization variant of the problem called Wheeler Graph Violation, abbreviated WGV, where the aim is to remove the minimum number of edges in order to obtain a Wheeler graph. We show WGV is APX-hard, even when G is a DAG, implying there exists a constant C >= 1 for which there is no C-approximation algorithm (unless P = NP). Also, conditioned on the Unique Games Conjecture, for all C >= 1, it is NP-hard to find a C-approximation; - We define the Wheeler Subgraph problem, abbreviated WS, where the aim is to find the largest subgraph which is a Wheeler Graph (the dual of the WGV). In contrast to WGV, we prove that the WS problem is in APX for sigma=O(1); The above findings suggest that most problems under this theme are computationally difficult. However, we identify a class of graphs for which the recognition problem is polynomial-time solvable, raising the open question of which parameters determine this problem's difficulty.  more » « less
Award ID(s):
NSF-PAR ID:
10164524
Author(s) / Creator(s):
;
Date Published:
Journal Name:
27th Annual European Symposium on Algorithms (ESA) 2019
Format(s):
Medium: X
National Science Foundation
##### More Like this
1. In the Maximum Independent Set problem we are asked to find a set of pairwise nonadjacent vertices in a given graph with the maximum possible cardinality. In general graphs, this classical problem is known to be NP-hard and hard to approximate within a factor of n1−ε for any ε > 0. Due to this, investigating the complexity of Maximum Independent Set in various graph classes in hope of finding better tractability results is an active research direction. In H-free graphs, that is, graphs not containing a fixed graph H as an induced subgraph, the problem is known to remain NP-hard and APX-hard whenever H contains a cycle, a vertex of degree at least four, or two vertices of degree at least three in one connected component. For the remaining cases, where every component of H is a path or a subdivided claw, the complexity of Maximum Independent Set remains widely open, with only a handful of polynomial-time solvability results for small graphs H such as P5, P6, the claw, or the fork. We prove that for every such “possibly tractable” graph H there exists an algorithm that, given an H-free graph G and an accuracy parameter ε > 0, finds an independent set in G of cardinality within a factor of (1 – ε) of the optimum in time exponential in a polynomial of log | V(G) | and ε−1. That is, we show that for every graph H for which Maximum Independent Set is not known to be APX-hard in H-free graphs, the problem admits a quasi-polynomial time approximation scheme in this graph class. Our algorithm works also in the more general weighted setting, where the input graph is supplied with a weight function on vertices and we are maximizing the total weight of an independent set.
more » « less
2. Given a directed acyclic graph (DAG) G=(V,E), we say that G is (e,d)-depth-robust (resp. (e,d)-edge-depth-robust) if for any set S⊆V (resp. S⊆E) of at most |S|≤e nodes (resp. edges) the graph G−S contains a directed path of length d. While edge-depth-robust graphs are potentially easier to construct, many applications in cryptography require node depth-robust graphs with small indegree. We create a graph reduction that transforms an (e,d)-edge-depth-robust graph with m edges into a (e/2,d)-depth-robust graph with O(m) nodes and constant indegree. One immediate consequence of this result is the first construction of a provably (nloglognlogn,nlogn(logn)loglogn)-depth-robust graph with constant indegree. Our reduction crucially relies on ST-robust graphs, a new graph property we introduce which may be of independent interest. We say that a directed, acyclic graph with n inputs and n outputs is (k1,k2)-ST-robust if we can remove any k1 nodes and there exists a subgraph containing at least k2 inputs and k2 outputs such that each of the k2 inputs is connected to all of the k2 outputs. If the graph if (k1,n−k1)-ST-robust for all k1≤n we say that the graph is maximally ST-robust. We show how to construct maximally ST-robust graphs with constant indegree and O(n) nodes. Given a family M of ST-robust graphs and an arbitrary (e,d)-edge-depth-robust graph G we construct a new constant-indegree graph Reduce(G,M) by replacing each node in G with an ST-robust graph from M. We also show that ST-robust graphs can be used to construct (tight) proofs-of-space and (asymptotically) improved wide-block labeling functions.
more » « less
3. (Ed.)
The classical (parallel) black pebbling game is a useful abstraction which allows us to analyze the resources (space, space-time, cumulative space) necessary to evaluate a function f with a static data-dependency graph G. Of particular interest in the field of cryptography are data-independent memory-hard functions fG,H which are defined by a directed acyclic graph (DAG) G and a cryptographic hash function H. The pebbling complexity of the graph G characterizes the amortized cost of evaluating fG,H multiple times as well as the total cost to run a brute-force preimage attack over a fixed domain X, i.e., given y∈{0,1}∗ find x∈X such that fG,H(x)=y. While a classical attacker will need to evaluate the function fG,H at least m=|X| times a quantum attacker running Grover’s algorithm only requires O(m−−√) blackbox calls to a quantum circuit CG,H evaluating the function fG,H. Thus, to analyze the cost of a quantum attack it is crucial to understand the space-time cost (equivalently width times depth) of the quantum circuit CG,H. We first observe that a legal black pebbling strategy for the graph G does not necessarily imply the existence of a quantum circuit with comparable complexity—in contrast to the classical setting where any efficient pebbling strategy for G corresponds to an algorithm with comparable complexity for evaluating fG,H. Motivated by this observation we introduce a new parallel reversible pebbling game which captures additional restrictions imposed by the No-Deletion Theorem in Quantum Computing. We apply our new reversible pebbling game to analyze the reversible space-time complexity of several important graphs: Line Graphs, Argon2i-A, Argon2i-B, and DRSample. Specifically, (1) we show that a line graph of size N has reversible space-time complexity at most O(N^{1+2/√logN}). (2) We show that any (e, d)-reducible DAG has reversible space-time complexity at most O(Ne+dN2^d). In particular, this implies that the reversible space-time complexity of Argon2i-A and Argon2i-B are at most O(N^2 loglogN/√logN) and O(N^2/(log N)^{1/3}), respectively. (3) We show that the reversible space-time complexity of DRSample is at most O((N^2loglog N)/log N). We also study the cumulative pebbling cost of reversible pebblings extending a (non-reversible) pebbling attack of Alwen and Blocki on depth-reducible graphs.
more » « less
4. (Ed.)
The cumulative pebbling complexity of a directed acyclic graph G is defined as cc(G) = min_P ∑_i |P_i|, where the minimum is taken over all legal (parallel) black pebblings of G and |P_i| denotes the number of pebbles on the graph during round i. Intuitively, cc(G) captures the amortized Space-Time complexity of pebbling m copies of G in parallel. The cumulative pebbling complexity of a graph G is of particular interest in the field of cryptography as cc(G) is tightly related to the amortized Area-Time complexity of the Data-Independent Memory-Hard Function (iMHF) f_{G,H} [Joël Alwen and Vladimir Serbinenko, 2015] defined using a constant indegree directed acyclic graph (DAG) G and a random oracle H(⋅). A secure iMHF should have amortized Space-Time complexity as high as possible, e.g., to deter brute-force password attacker who wants to find x such that f_{G,H}(x) = h. Thus, to analyze the (in)security of a candidate iMHF f_{G,H}, it is crucial to estimate the value cc(G) but currently, upper and lower bounds for leading iMHF candidates differ by several orders of magnitude. Blocki and Zhou recently showed that it is NP-Hard to compute cc(G), but their techniques do not even rule out an efficient (1+ε)-approximation algorithm for any constant ε>0. We show that for any constant c > 0, it is Unique Games hard to approximate cc(G) to within a factor of c. Along the way, we show the hardness of approximation of the DAG Vertex Deletion problem on DAGs of constant indegree. Namely, we show that for any k,ε >0 and given a DAG G with N nodes and constant indegree, it is Unique Games hard to distinguish between the case that G is (e_1, d_1)-reducible with e_1=N^{1/(1+2 ε)}/k and d_1=k N^{2 ε/(1+2 ε)}, and the case that G is (e_2, d_2)-depth-robust with e_2 = (1-ε)k e_1 and d_2= 0.9 N^{(1+ε)/(1+2 ε)}, which may be of independent interest. Our result generalizes a result of Svensson who proved an analogous result for DAGs with indegree 𝒪(N).
more » « less
5. For graphs G and H, we say that G is H-free if it does not contain H as an induced subgraph. Already in the early 1980s Alekseev observed that if H is connected, then the Max Weight Independent Set problem (MWIS) remains NP-hard in H-free graphs, unless H is a path or a subdivided claw, i.e., a graph obtained from the three-leaf star by subdividing each edge some number of times (possibly zero). Since then determining the complexity of MWIS in these remaining cases is one of the most important problems in algorithmic graph theory. A general belief is that the problem is polynomial-time solvable, which is witnessed by algorithmic results for graphs excluding some small paths or subdivided claws. A more conclusive evidence was given by the recent breakthrough result by Gartland and Lokshtanov [FOCS 2020]: They proved that MWIS can be solved in quasipolynomial time in H-free graphs, where H is any fixed path. If H is an arbitrary subdivided claw, we know much less: The problem admits a QPTAS and a subexponential-time algorithm [Chudnovsky et al., SODA 2019]. In this paper we make an important step towards solving the problem by showing that for any subdivided claw H, MWIS is polynomial-time solvable in H-free graphs of bounded degree.
more » « less