skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: K-12 Engineering and the Next Generation Science Standards (NGSS): A Network Visualization and Analysis
We present an interactive network visualization of the Next Generation Science Standards (NGSS) and its coverage by collections of aligned curriculum. The visualization presents an alternative to the usual presentation of the NGSS as a set of linked tables. Users can view entire grade bands, search for or drill down to the level of individual NGSS standards or curricular items, or display groups of standards across grade bands. NGSS-aligned curriculum collections can be switched on and off to visually explore their NGSS coverage. Viewing the NGSS and associated curriculum this way facilitates navigating the NGSS and can help with assessment of alignments as lacking or anomalous. Modeling the NGSS as a network also allows for the computation of network metrics to provide insight into core characteristics of the network. It also provides for detecting anomalies and unexpected patterns.  more » « less
Award ID(s):
1941701
PAR ID:
10164529
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
2020 ASEE Annual Conference and Expo
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The Next Generation Science Standards (NGSS) reflect an ambitious vision for science education where students investigate phenomena or solve problems through using and applying disciplinary core ideas in concert with science and engineering practices and crosscutting concepts. Because the NGSS are so different from prior standards, the need for high-quality curriculum materials is especially great. As new curricula go to scale, it will be important to conduct evidence-based research on their efficacy. We conducted a randomized experiment to examine the efficacy of a widely available NGSS-designed middle school curriculum for improving seventh grade students’ learning in physical science. A hierarchical linear modeling approach was applied to analyze student learning outcomes as measured by an NGSS-aligned assessment. Initial findings demonstrate evidence of promise of the curriculum materials for supporting three-dimensional teaching and learning. The findings provide support for further research on NGSS-designed materials at other grade levels and within other science domains. 
    more » « less
  2. With a national emphasis on integrated science, technology, engineering, and mathematics (STEM) education in K-16 courses, incorporating technology in a meaningful way is critical. This research examines whether STEM and non-STEM teachers were able to incorporate technology in STEM courses successfully with sufficient professional development. The teachers in this study consisted of faculty from middle schools, high schools, and colleges recruited for STEM Guitar Building institutes held between 2013 and 2016. Each teacher participated in a 50-hour professional development opportunity in the manufacture of a solid-body electric guitar and received instruction on how to teach integrated STEM Modular Learning Activities (MLAs), which are aligned with the Common Core mathematics standards and the Next Generation Science Standards (NGSS). The data collected include pre- and postassessment from 769 students in three grade bands (grades 6-8, 9-12, and undergraduate level from 15 states). The results showed statistically significant gains at the p < 0.05 level across all 12 of the core MLAs, with no statistically significant difference between STEM and non-STEM instructors for all except two MLAs. The two MLAs that did reveal a statistically significant difference were more technical—Set Up and Computer Aided Design/Computer Aided Manufacturing Systems (CAD/CAM). These results show non-STEM and STEM teachers alike in this study were able to successfully incorporate technology in NGSS-aligned integrated STEM lessons, as evidenced by student learning gains. 
    more » « less
  3. The development of the CS content standards underscores the importance of curricula aligned with the standards, ensuring equitable coverage of CS concepts for all students. Because standards are broad, we emphasize the need for CS curricula to specify not only the standards they align with but also which aspects of the standards they align with and how. We map one common middle school CS curriculum to a few standards to demonstrate this need. 
    more » « less
  4. Wang, Ning; Lester, James C. (Ed.)
    This article provides an in-depth look at how K-12 students should be introduced to Machine Learning and the knowledge and skills they will develop as a result. We begin with an overview of the AI4K12 Initiative, which is developing national guidelines for teaching AI in K-12, and briefly discuss each of the “Five Big Ideas in AI” that serve as the organizing framework for the guidelines. We then discuss the general format and structure of the guidelines and grade band progression charts and provide a theoretical framework that highlights the developmental appropriateness of the knowledge and skills we want to impart to students and the learning experiences we expect them to engage in. Development of the guidelines is informed by best practices from Learning Sciences and CS Education research, and by the need for alignment with CSTA’s K-12 Computer Science Standards, Common Core standards, and Next Generation Science Standards (NGSS). The remainder of the article provides an in-depth exploration of the AI4K12 Big Idea 3 (Learning) grade band progression chart to unpack the concepts we expect students to master at each grade band. We present examples to illustrate the progressions from two perspectives: horizontal (across grade bands) and vertical (across concepts for a given grade band). Finally, we discuss how these guidelines can be used to create learning experiences that make connections across the Five Big Ideas, and free online tools that facilitate these experiences. 
    more » « less
  5. Wang, Ning; Lester, James (Ed.)
    This article provides an in-depth look at how K-12 students should be introduced to Machine Learning and the knowledge and skills they will develop as a result. We begin with an overview of the AI4K12 Initiative, which is developing national guidelines for teaching AI in K-12, and briefly discuss each of the “Five Big Ideas in AI” that serve as the organizing framework for the guidelines. We then discuss the general format and structure of the guidelines and grade band progression charts and provide a theoretical framework that highlights the developmental appropriateness of the knowledge and skills we want to impart to students and the learning experiences we expect them to engage in. Development of the guidelines is informed by best practices from Learning Sciences and CS Education research, and by the need for alignment with CSTA’s K-12 Computer Science Standards, Common Core standards, and Next Generation Science Standards (NGSS). The remainder of the article provides an in-depth exploration of the AI4K12 Big Idea 3 (Learning) grade band progression chart to unpack the concepts we expect students to master at each grade band. We present examples to illustrate the progressions from two perspectives: horizontal (across grade bands) and vertical (across concepts for a given grade band). Finally, we discuss how these guidelines can be used to create learning experiences that make connections across the Five Big Ideas, and free online tools that facilitate these experiences. 
    more » « less