A bstract We propose that the electroweak and flavour quantum numbers of the Standard Model (SM) could be unified at high energies in an SU(4) × Sp(6) L × Sp(6) R anomaly-free gauge model. All the SM fermions are packaged into two fundamental fields, Ψ L ∼ ( 4 , 6 , 1 ) and Ψ R ∼ ( 4 , 1 , 6 ), thereby explaining the origin of three families of fermions. The SM Higgs, being electroweakly charged, necessarily becomes charged also under flavour when embedded in the UV model. It is therefore natural for its vacuum expectation value to couple only to the third family. The other components of the UV Higgs fields are presumed heavy. Extra scalars are needed to break this symmetry down to the SM, which can proceed via ‘flavour-deconstructed’ gauge groups; for instance, we propose a pattern Sp(6) L → $$ {\prod}_{i=1}^3\mathrm{SU}{(2)}_{L,i}\to \mathrm{SU}{(2)}_L $$ ∏ i = 1 3 SU 2 L , i → SU 2 L for the left-handed factor. When the heavy Higgs components are integrated out, realistic quark Yukawa couplings with in-built hierarchies are naturally generated without any further ingredients, if we assume the various symmetry breaking scalars condense at different scales. The CKM matrix that we compute is not a generic unitary matrix, but it can precisely fit the observed values.
more »
« less
Electroweak sector under scrutiny: A combined analysis of LHC and electroweak precision data
- Award ID(s):
- 1915093
- PAR ID:
- 10164640
- Date Published:
- Journal Name:
- Physical Review D
- Volume:
- 99
- Issue:
- 3
- ISSN:
- 2470-0010
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)We discuss the improvements that the ILC can make in precision electroweak observables based on studies with the ILD detector concept. These include observables from WW production at a centre of mass energy of 250 GeV and above, and especially from a dedicated stage of running at the Z pole. These improvements take advantage of the ILC capabilities for polarized electron and positron beams, and an accelerator design that accommodates data-taking at a wide range of beam energies. The studies include experimental considerations evaluated in the context of the ILD detector concept and discussion of experimental strategies targeted at controlling especially systematic uncertainties associated with the center-of-mass energy.more » « less
-
A bstract Electroweak baryogenesis (EWBG) offers a compelling narrative for the generation of the baryon asymmetry, however it cannot be realised in the Standard Model, and leads to severe experimental tensions in the Minimal Supersymmetric Standard Model (MSSM). One of the reasons for these experimental tensions is that in traditional approaches to EWBG new physics is required to enter at the electroweak phase transition, which conventionally is fixed near 100 GeV. Here we demonstrate that the addition of sub-TeV fields in supersymmetric extensions of the Standard Model permits TeV-scale strongly first-order electroweak phase transition. While earlier literature suggested no-go arguments with regards to high-temperature symmetry breaking in supersymmetric models, we show these can be evaded by employing a systematic suppression of certain thermal corrections in theories with a large number of states. The models presented push the new physics needed for EWBG to higher scales, hence presenting new parameter regions in which to realize EWBG and evade experimental tensions, however they are not expected to render EWBG completely outside of the foreseeable future experimental reach.more » « less
-
It has long been recognized that the scattering of electroweak particles at very high energies is dominated by vector boson fusion, which probes the origin of electroweak symmetry breaking and offers a unique window into the ultraviolet regime of the Standard Model (SM). Previous studies assume SM-like couplings and rely on the effective approximation (or electroweak parton distribution), whose validity is well established within the SM but not yet studied in the presence of anomalous Higgs couplings. In this work, we critically examine the electroweak production of two Higgs bosons in the presence of anomalous and couplings. We compute the corresponding helicity amplitudes and compare the cross section results in the effective approximation with the full fixed-order calculation. In particular, we identify two distinct classes of anomalous Higgs couplings, whose effects are not captured by vector boson fusion and effective approximation. Such very-high-energy electroweak scatterings can be probed at the muon shot, a multi-TeV muon collider upon which we base our study, although similar considerations apply to other high-energy colliders. Published by the American Physical Society2024more » « less
An official website of the United States government

