skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: An Empirical Study of Real-World Variability Bugs Detected by Variability-Oblivious Tools
Many critical software systems developed in C utilize compile-time configurability. The many possible configurations of this software make bug detection through static analysis difficult. While variability-aware static analyses have been developed, there remains a gap between those and state-of-the-art static bug detection tools. In order to collect data on how such tools may perform and to develop real-world benchmarks, we present a way to leverage configuration sampling, off-the-shelf “variability-oblivious” bug detectors, and automatic feature identification techniques to simulate a variability-aware analysis. We instantiate our approach using four popular static analysis tools on three highly configurable, real-world C projects, obtaining 36,061 warnings, 80% of which are variability warnings. We analyze the warnings we collect from these experiments, finding that most results are variability warnings of a variety of kinds such as NULL dereference. We then manually investigate these warnings to produce a benchmark of 77 confirmed true bugs (52 of which are variability bugs) useful for future development of variability-aware analyses.  more » « less
Award ID(s):
1840934 1816951
PAR ID:
10164841
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
ESEC/FSE 2019: Proceedings of the 2019 27th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering
Page Range / eLocation ID:
50 to 61
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Variability in C software is a useful tool, but critical bugs that only exist in certain configurations are easily missed by conventional debugging techniques. Even with a small number of features, the configuration space of configurable software is too large to analyze exhaustively. Variability-aware static analysis for bug detection is being developed, but remains at too early a stage to be fully usable in real-world C programs. In this work, we present a methodology of finding variability bugs by combining variability-oblivious bug detectors, static analysis of build processes, and dynamic feature interaction inference. We further present an empirical study in which we test our methodology on two highly configurable C programs. We found our methodology to be effective, finding 88 true bugs between the two programs, of which 64 were variability bugs. 
    more » « less
  2. Static analysis tools have demonstrated effectiveness at finding bugs in real world code. Such tools are increasingly widely adopted to improve software quality in practice. Automated Program Repair (APR) has the potential to further cut down on the cost of improving software quality. However, there is a disconnect between these effective bug-finding tools and APR. Recent advances in APR rely on test cases, making them inapplicable to newly discovered bugs or bugs difficult to test for deterministically (like memory leaks). Additionally, the quality of patches generated to satisfy a test suite is a key challenge. We address these challenges by adapting advances in practical static analysis and verification techniques to enable a new technique that finds and then accurately fixes real bugs without test cases. We present a new automated program repair technique using Separation Logic. At a high-level, our technique reasons over semantic effects of existing program fragments to fix faults related to general pointer safety properties: resource leaks, memory leaks, and null dereferences. The procedure automatically translates identified fragments into source-level patches, and verifies patch correctness with respect to reported faults. In this work we conduct the largest study of automatically fixing undiscovered bugs in real-world code to date. We demonstrate our approach by correctly fixing 55 bugs, including 11 previously undiscovered bugs, in 11 real-world projects. 
    more » « less
  3. Increasing studies have shown bugs in multi-language software as a critical loophole in modern software quality assurance, especially those induced by language interactions (i.e., multilingual bugs). Yet existing tool support for bug detection/localization remains largely limited to single-language software, despite the long-standing prevalence of multi-language systems in various real-world software domains. Extant static/dynamic analysis and deep learning (DL) based approaches all face major challenges in addressing multilingual bugs. In this paper, we present xLoc, a DL-based technique/tool for detecting and localizing multilingual bugs. Motivated by results of our bug-characteristics study on top locations of multilingual bugs, xLoc first learns the general knowledge relevant to differentiating various multilingual control-flow structures. This is achieved by pre-training a Transformer model with customized position encoding against novel objectives. Then, xLoc learns task-specific knowledge for the task of multilingual bug detection/localization, through another new position encoding scheme (based on cross-language API vicinity) that allows for the model to attend particularly to control-flow constructs that bear most multilingual bugs during fine-tuning. We have implemented xLoc for Python-C software and curated a dataset of 3,770 buggy and 15,884 non-buggy Python-C samples, which enabled our extensive evaluation of xLoc against two state-of-the-art baselines: fine-tuned CodeT5 and zero-shot ChatGPT. Our results show that xLoc achieved 94.98% F1 and 87.24%@Top-1 accuracy, which are significantly (up to 162.88% and 511.75%) higher than the baselines. Ablation studies further confirmed significant contributions of each of the novel design elements in xLoc. With respective bug-location characteristics and labeled bug datasets for fine-tuning, our design may be applied to other language combinations beyond Python-C. 
    more » « less
  4. Abstract Many critical codebases are written in C, and most of them use preprocessor directives to encode variability, effectively encoding software product lines. These preprocessor directives, however, challenge any static code analysis. SPLlift, a previously presented approach for analyzing software product lines, is limited to Java programs that use a rather simple feature encoding and to analysis problems with a finite and ideally small domain. Other approaches that allow the analysis of real-world C software product lines use special-purpose analyses, preventing the reuse of existing analysis infrastructures and ignoring the progress made by the static analysis community. This work presents VarAlyzer , a novel static analysis approach for software product lines. VarAlyzer first transforms preprocessor constructs to plain C while preserving their variability and semantics. It then solves any given distributive analysis problem on transformed product lines in a variability-aware manner. VarAlyzer ’s analysis results are annotated with feature constraints that encode in which configurations each result holds. Our experiments with 95 compilation units of OpenSSL show that applying VarAlyzer enables one to conduct inter-procedural, flow-, field- and context-sensitive data-flow analyses on entire product lines for the first time, outperforming the product-based approach for highly-configurable systems. 
    more » « less
  5. Variability-aware analysis is critical for ensuring the quality of configurable C software. An important step toward the development of variability-aware analysis at scale is to transform real-world C software that uses both C and preprocessor into pure C code, by replacing the preprocessor's compile-time variability with C's runtime-variability. In this work, we design and implement a desugaring tool, SugarC, that transforms away real-world preprocessor usage. SugarC augments C's formal grammar specification with translation rules, performs simultaneous type checking during desugaring, and introduces numerous optimizations to address challenges that appear in real-world preprocessor usage. The experiments on DesugarBench, a benchmark consisting of 108 manually-created programs, show that SugarC supports many more language features than two existing desugaring tools. When applied on three real-world configurable C software, SugarC desugared 774 out of 813 files in the three programs, taking at most ten minutes in the worst case and less than two minutes for 95% of the C files. 
    more » « less