skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Leveraging Schema Labels to Enhance Dataset Search
A search engine's ability to retrieve desirable datasets is important for data sharing and reuse. Existing dataset search engines typically rely on matching queries to dataset descriptions. However, a user may not have enough prior knowledge to write a query using terms that match with description text. We propose a novel schema label generation model which generates possible schema labels based on dataset table content. We incorporate the generated schema labels into a mixed ranking model which not only considers the relevance between the query and dataset metadata but also the similarity between the query and generated schema labels. To evaluate our method on real-world datasets, we create a new benchmark specifically for the dataset retrieval task. Experiments show that our approach can effectively improve the precision and NDCG scores of the dataset retrieval task compared with baseline methods. We also test on a collection of Wikipedia tables to show that the features generated from schema labels can improve the unsupervised and supervised web table retrieval task as well.  more » « less
Award ID(s):
1816325
PAR ID:
10164853
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
42nd European Conference on Information Retrieval, LNCS
Volume:
12035
Page Range / eLocation ID:
267-280
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    We describe the development, characteristics and availability of a test collection for the task of Web table retrieval, which uses a large-scale Web Table Corpora extracted from the Common Crawl. Since a Web table usually has rich context information such as the page title and surrounding paragraphs, we not only provide relevance judgments of query-table pairs, but also the relevance judgments of query-table context pairs with respect to a query, which are ignored by previous test collections. To facilitate future research with this benchmark, we provide details about how the dataset is pre-processed and also baseline results from both traditional and recently proposed table retrieval methods. Our experimental results show that proper usage of context labels can benefit previous table retrieval methods. 
    more » « less
  2. Dense retrieval systems conduct first-stage retrieval using embedded representations and simple similarity metrics to match a query to documents. Its effectiveness depends on encoded embeddings to capture the semantics of queries and documents, a challenging task due to the shortness and ambiguity of search queries. This paper proposes ANCE-PRF, a new query encoder that uses pseudo relevance feedback (PRF) to improve query representations for dense retrieval. ANCE-PRF uses a BERT encoder that consumes the query and the top retrieved documents from a dense retrieval model, ANCE, and it learns to produce better query embeddings directly from relevance labels. It also keeps the document index unchanged to reduce overhead. ANCE-PRF significantly outperforms ANCE and other recent dense retrieval systems on several datasets. Analysis shows that the PRF encoder effectively captures the relevant and complementary information from PRF documents, while ignoring the noise with its learned attention mechanism. 
    more » « less
  3. null (Ed.)
    We address the problem of ad hoc table retrieval via a new neural architecture that incorporates both semantic and relevance matching. Understanding the connection between the structured form of a table and query tokens is an important yet neglected problem in information retrieval. We use a learning- to-rank approach to train a system to capture semantic and relevance signals within interactions between the structured form of candidate tables and query tokens. Convolutional filters that extract contextual features from query/table interactions are combined with a feature vector based on the distributions of term similarity between queries and tables. We propose using row and column summaries to incorporate table content into our new neural model. We evaluate our approach using two datasets, and we demonstrate substantial improvements in terms of retrieval metrics over state-of-the-art methods in table retrieval and document retrieval, and neural architectures from sentence, document, and table type classification adapted to the table retrieval task. Our ablation study supports the importance of both semantic and relevance matching in the table retrieval. 
    more » « less
  4. Table retrieval is the task of extracting the most relevant tables to answer a user's query. Table retrieval is an important task because many domains have tables that contain useful information in a structured form. Given a user's query, the goal is to obtain a relevance ranking for query-table pairs, such that higher ranked tables should be more relevant to the query. In this paper, we present a context-aware table retrieval method that is based on a novel embedding for attribute tokens. We find that differentiated types of contexts are useful in building word embeddings. We also find that including a specialized representation of numerical cell values in our model improves table retrieval performance. We use the trained model to predict different contexts of every table. We show that the predicted contexts are useful in ranking tables against a query using a multi-field ranking approach. We evaluate our approach using public WikiTables data, and we demonstrate improvements in terms of NDCG over unsupervised baseline methods in the table retrieval task. 
    more » « less
  5. Table search aims to answer a query with a ranked list of tables. Unfortunately, current test corpora have focused mostly on needle- in-the-haystack tasks, where only a few tables are expected to exactly match the query intent. Instead, table search tasks often arise in response to the need for retrieving new datasets or augment- ing existing ones, e.g., for data augmentation within data science or machine learning pipelines. Existing table repositories and bench- marks are limited in their ability to test retrieval methods for table search tasks. Thus, to close this gap, we introduce a novel dataset for query-by-example Semantic Table Search. This novel dataset con- sists of two snapshots of the large-scale Wikipedia tables collection from 2013 and 2019 with two important additions: (1) a page and topic aware ground truth relevance judgment and (2) a large-scale DBpedia entity linking annotation. Moreover, we generate a novel set of entity-centric queries that allows testing existing methods under a novel search scenario: semantic exploratory search. The resulting resource consists of 9,296 novel queries, 610,553 query- table relevance annotations, and 238,038 entity-linked tables from the 2013 snapshot. Similarly, on the 2019 snapshot, the resource consists of 2,560 queries, 958,214 relevance annotations, and 457,714 total tables. This makes our resource the largest annotated table- search corpus to date (97 times more queries and 956 times more annotated tables than any existing benchmark). We perform a user study among domain experts and prove that these annotators agree with the automatically generated relevance annotations. As a re- sult, we can re-evaluate some basic assumptions behind existing table search approaches identifying their shortcomings along with promising novel research directions. 
    more » « less