The temporal evolution of El Niño and La Niña varies greatly from event to event. To understand the dynamical processes controlling the duration of El Niño and La Niña events, a suite of observational data and a long control simulation of the Community Earth System Model, version 1, are analyzed. Both observational and model analyses show that the duration of El Niño is strongly affected by the timing of onset. El Niño events that develop early tend to terminate quickly after the mature phase because of the early arrival of delayed negative oceanic feedback and fast adjustments of the tropical Atlantic and Indian Oceans to the tropical Pacific Ocean warming. The duration of La Niña events is, on the other hand, strongly influenced by the amplitude of preceding warm events. La Niña events preceded by a strong warm event tend to persist into the second year because of large initial discharge of the equatorial oceanic heat content and delayed adjustments of the tropical Atlantic and Indian Oceans to the tropical Pacific cooling. For both El Niño and La Niña, the interbasin sea surface temperature (SST) adjustments reduce the anomalous SST gradient toward the tropical Pacific and weaken surface wind anomalies over the western equatorial Pacific, hastening the event termination. Other factors external to the dynamics of El Niño–Southern Oscillation, such as coupled variability in the tropical Atlantic and Indian Oceans and atmospheric variability over the North Pacific, also contribute to the diversity of event duration.
more »
« less
Long Island Sound temperature variability and its associations with the ridge–trough dipole and tropical modes of sea surface temperature variability
Abstract. Possible mechanisms behind the longevity of intense Long IslandSound (LIS) water temperature events are examined using an event-basedapproach. By decomposing an LIS surface water temperature time series intonegative and positive events, it is revealed that the most intense LIS watertemperature event in the 1979–2013 period occurred around 2012, coincidingwith the 2012 ocean heat wave across the Mid-Atlantic Bight. The LIS eventsare related to a ridge–trough dipole pattern whose strength and evolution canbe determined using a dipole index. The dipole index was shown to be stronglycorrelated with LIS water temperature anomalies, explaining close to 64 %of cool-season LIS water temperature variability. Consistently, a majordipole pattern event coincided with the intense 2012 LIS warm event. Acomposite analysis revealed that long-lived intense LIS water temperatureevents are associated with tropical sea surface temperature (SST) patterns.The onset and mature phases of LIS cold events were shown to coincide withcentral Pacific El Niño events, whereas the termination of LIS coldevents was shown to possibly coincide with canonical El Niño events or ElNiño events that are a mixture of eastern and central Pacific El Niñoflavors. The mature phase of LIS warm events was shown to be associated withnegative SST anomalies across the central equatorial Pacific, though theresults were not found to be robust. The dipole pattern was also shown to berelated to tropical SST patterns, and fluctuations in central Pacific SSTanomalies were shown to evolve coherently with the dipole pattern and thestrongly related East Pacific–North Pacific pattern on decadal timescales.The results from this study have important implications for seasonal anddecadal prediction of the LIS thermal system.
more »
« less
- Award ID(s):
- 1822015
- PAR ID:
- 10164903
- Date Published:
- Journal Name:
- Ocean Science
- Volume:
- 15
- Issue:
- 1
- ISSN:
- 1812-0792
- Page Range / eLocation ID:
- 161 to 178
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
El Niño-Southern Oscillation (ENSO) sea surface temperature (SST) anomaly skewness encapsulates the nonlinear processes of strong ENSO events and affects future climate projections. Yet, its response to CO2 forcing remains not well understood. Here, we find ENSO skewness hysteresis in a large ensemble CO2 removal simulation. The positive SST skewness in the central-to-eastern tropical Pacific gradually weakens (most pronounced near the dateline) in response to increasing CO2, but weakens even further once CO2 is ramped down. Further analyses reveal that hysteresis of the Intertropical Convergence Zone migration leads to more active and farther eastward-located strong eastern Pacific El Niño events, thus decreasing central Pacific ENSO skewness by reducing the amplitude of the central Pacific positive SST anomalies and increasing the scaling effect of the eastern Pacific skewness denominator, i.e., ENSO intensity, respectively. The reduction of eastern Pacific El Niño maximum intensity, which is constrained by the SST zonal gradient of the projected background El Niño-like warming pattern, also contributes to a reduction of eastern Pacific SST skewness around the CO2 peak phase. This study highlights the divergent responses of different strong El Niño regimes in response to climate change.more » « less
-
Abstract The 2023/24 El Niño commenced with an exceptionally large warm water volume in the equatorial western Pacific, comparable to the extreme 1997/98 and 2015/16 events, but did not develop into a super El Niño. This study highlights the critical role of contrasting Northern Pacific Meridional Mode (NPMM) conditions in this divergence. Warm NPMM conditions during the 1997/98 and 2015/16 events created a positive zonal sea surface temperature (SST) gradient in the equatorial western-central Pacific and enhanced Madden-Julian Oscillation (MJO) propagation, driving sustained westerly wind bursts (WWBs) and downwelling Kelvin waves that intensified both events. In contrast, the cold NPMM during 2023/24 induced a negative SST gradient and suppressed MJO activity, resulting in weaker WWBs and limited eastward wave activity, preventing the event from reaching super El Niño intensity. A 2,200-year CESM1 pre-industrial simulation corroborates these observational findings, underscoring the importance of NPMM interference in improving El Niño intensity predictions.more » « less
-
Abstract El Niño/Southern Oscillation variability has conspicuous impacts on ecosystems and severe weather. Here, we probe the effects of anthropogenic aerosols and greenhouse gases on El Niño/Southern Oscillation variability during the historical period using a broad set of climate models. Increased aerosols significantly amplify El Niño/Southern Oscillation variability primarily through weakening the mean advection feedback and strengthening the zonal advection and thermocline feedbacks, as linked to a weaker annual cycle of sea surface temperature in the eastern equatorial Pacific. They prevent extreme El Niño events, reduce interannual sea surface temperature skewness in the tropical Pacific, influence the likelihood of El Niño/Southern Oscillation events in April and June and allow for more El Niño transitions to Central Pacific events. While rising greenhouse gases significantly reduce El Niño/Southern Oscillation variability via a stronger sea surface temperature annual cycle and attenuated thermocline feedback. They promote extreme El Niño events, increase SST skewness, and enlarge the likelihood of El Niño/Southern Oscillation peaking in November while inhibiting Central Pacific El Niño/Southern Oscillation events.more » « less
-
Abstract Interannual sea surface temperature (SST) variations in the tropical Atlantic Ocean lead to anomalous atmospheric circulation and precipitation patterns with important ecological and socioeconomic consequences for the semiarid regions of sub-Saharan Africa and northeast Brazil. This interannual SST variability is characterized by three modes: an Atlantic meridional mode featuring an anomalous cross-equatorial SST gradient that peaks in boreal spring; an Atlantic zonal mode (Atlantic Niño mode) with SST anomalies in the eastern equatorial Atlantic cold tongue region that peaks in boreal summer; and a second zonal mode of variability with eastern equatorial SST anomalies peaking in boreal winter. Here we investigate the extent to which there is any seasonality in the relationship between equatorial warm water recharge and the development of eastern equatorial Atlantic SST anomalies. Seasonally stratified cross-correlation analysis between eastern equatorial Atlantic SST anomalies and equatorial heat content anomalies (evaluated using warm water volume and sea surface height) indicate that while equatorial heat content changes do occasionally play a role in the development of boreal summer Atlantic zonal mode events, they contribute more consistently to Atlantic Niño II, boreal winter events. Event and composite analysis of ocean adjustment with a shallow water model suggest that the warm water volume anomalies originate mainly from the off-equatorial northwestern Atlantic, in agreement with previous studies linking them to anomalous wind stress curl associated with the Atlantic meridional mode.more » « less
An official website of the United States government

