skip to main content

Title: Network-based multi-task learning models for biomarker selection and cancer outcome prediction
Abstract Motivation Detecting cancer gene expression and transcriptome changes with mRNA-sequencing (RNA-Seq) or array-based data are important for understanding the molecular mechanisms underlying carcinogenesis and cellular events during cancer progression. In previous studies, the differentially expressed genes were detected across patients in one cancer type. These studies ignored the role of mRNA expression changes in driving tumorigenic mechanisms that are either universal or specific in different tumor types. To address the problem, we introduce two network-based multi-task learning frameworks, NetML and NetSML, to discover common differentially expressed genes shared across different cancer types as well as differentially expressed genes specific to each cancer type. The proposed frameworks consider the common latent gene co-expression modules and gene-sample biclusters underlying the multiple cancer datasets to learn the knowledge crossing different tumor types. Results Large-scale experiments on simulations and real cancer high-throughput datasets validate that the proposed network-based multi-task learning frameworks perform better sample classification compared with the models without the knowledge sharing across different cancer types. The common and cancer specific molecular signatures detected by multi-task learning frameworks on TCGA ovarian cancer, breast cancer, and prostate cancer datasets are correlated with the known marker genes and enriched in cancer relevant KEGG pathways more » and Gene Ontology terms. Availability and Implementation Source code is available at: https://github.com/compbiolabucf/NetML Supplementary information Supplementary data are available at Bioinformatics « less
Authors:
; ; ; ; ; ;
Award ID(s):
1755761 1908495 2003749
Publication Date:
NSF-PAR ID:
10165122
Journal Name:
Bioinformatics
ISSN:
1367-4803
Sponsoring Org:
National Science Foundation
More Like this
  1. Finding genes biologically directly or indirectly related to lung cancer has been drawing much attention, and many genes directly related to lung cancer have been reported. However, it has not been confirmed whether those published 'key' genes are truly critical to lung cancer formation, i.e., they may be with very limited useful information. As a result, finding essential genes remains a challenging lung cancer research problem. Using a recently developed competing linear factor analysis method in differentially expressed gene detection, we advance the study of lung cancer critical genes detection to a uniformly informative level. A set of common four genes and their functional effects are detected to be differentially expressed in tumor and non- tumor samples with 100% sensitivity and 100% specificity in one study of lung adenocarcinoma (LUAD) and one study of squamous cell lung cancers (LUSC) (two North American cohorts with 20429 genes, 576 and 552 samples respectively). Two additional analyses also gain accuracy of 97.8% sensitivity and 100% specificity in one study of non-small cell lung carcinomas (NSCLC, a European cohort with 20356 genes and 156 samples), and an accuracy of 100% sensitivity and 95% specificity (1 out of 20 non-tumor samples) in one study ofmore »ALK-positive and EGFR/KRAS/ALK-negative lung adenocarcinomas (LUAD, a Japanese cohort with 20356 genes and 224 samples). There are some common genes, but different functional effects, within each set of four genes among two North American cohorts and a European cohort and among North American cohorts and the Japanese cohort. These results show the four-gene-based classifiers are robust with different types of lung cancers and different race cohorts and accurate. The functional effects of four genes disclose significantly other mechanisms (mysteries) between LUAD and LUSC. These sets of four genes and their functional effects are considered to be essential for lung cancer studies and practice. These genes' functional effects naturally classify patients into different groups (more than seven subtypes). Subtype information is useful for personalized therapies. The new findings can motivate new lung cancer research in more focused and targeted directions to save lives, protect people, and reduce enormous economic costs in research and lung cancer treatments.« less
  2. Abstract Motivation

    The analysis of spatially resolved transcriptome enables the understanding of the spatial interactions between the cellular environment and transcriptional regulation. In particular, the characterization of the gene–gene co-expression at distinct spatial locations or cell types in the tissue enables delineation of spatial co-regulatory patterns as opposed to standard differential single gene analyses. To enhance the ability and potential of spatial transcriptomics technologies to drive biological discovery, we develop a statistical framework to detect gene co-expression patterns in a spatially structured tissue consisting of different clusters in the form of cell classes or tissue domains.

    Results

    We develop SpaceX (spatially dependent gene co-expression network), a Bayesian methodology to identify both shared and cluster-specific co-expression network across genes. SpaceX uses an over-dispersed spatial Poisson model coupled with a high-dimensional factor model which is based on a dimension reduction technique for computational efficiency. We show via simulations, accuracy gains in co-expression network estimation and structure by accounting for (increasing) spatial correlation and appropriate noise distributions. In-depth analysis of two spatial transcriptomics datasets in mouse hypothalamus and human breast cancer using SpaceX, detected multiple hub genes which are related to cognitive abilities for the hypothalamus data and multiple cancer genes (e.g. collagen family) frommore »the tumor region for the breast cancer data.

    Availability and implementation

    The SpaceX R-package is available at github.com/bayesrx/SpaceX.

    Supplementary information

    Supplementary data are available at Bioinformatics online.

    « less
  3. Abstract Motivation

    High-throughput mRNA sequencing (RNA-Seq) is a powerful tool for quantifying gene expression. Identification of transcript isoforms that are differentially expressed in different conditions, such as in patients and healthy subjects, can provide insights into the molecular basis of diseases. Current transcript quantification approaches, however, do not take advantage of the shared information in the biological replicates, potentially decreasing sensitivity and accuracy.

    Results

    We present a novel hierarchical Bayesian model called Differentially Expressed Isoform detection from Multiple biological replicates (DEIsoM) for identifying differentially expressed (DE) isoforms from multiple biological replicates representing two conditions, e.g. multiple samples from healthy and diseased subjects. DEIsoM first estimates isoform expression within each condition by (1) capturing common patterns from sample replicates while allowing individual differences, and (2) modeling the uncertainty introduced by ambiguous read mapping in each replicate. Specifically, we introduce a Dirichlet prior distribution to capture the common expression pattern of replicates from the same condition, and treat the isoform expression of individual replicates as samples from this distribution. Ambiguous read mapping is modeled as a multinomial distribution, and ambiguous reads are assigned to the most probable isoform in each replicate. Additionally, DEIsoM couples an efficient variational inference and a post-analysis method to improvemore »the accuracy and speed of identification of DE isoforms over alternative methods. Application of DEIsoM to an hepatocellular carcinoma (HCC) dataset identifies biologically relevant DE isoforms. The relevance of these genes/isoforms to HCC are supported by principal component analysis (PCA), read coverage visualization, and the biological literature.

    Availability and implementation

    The software is available at https://github.com/hao-peng/DEIsoM

    Supplementary information

    Supplementary data are available at Bioinformatics online.

    « less
  4. Autism spectrum disorder (ASD) is a neurodevelopmental disorder that impedes patients’ cognition, social, speech and communication skills. ASD is highly heterogeneous with a variety of etiologies and clinical manifestations. The prevalence rate of ASD increased steadily in recent years. Presently, molecular mechanisms underlying ASD occurrence and development remain to be elucidated. Here, we integrated multi-layer genomics data to investigate the transcriptome and pathway dysregulations in ASD development. The RNA sequencing (RNA-seq) expression profiles of induced pluripotent stem cells (iPSCs), neural progenitor cells (NPCs) and neuron cells from ASD and normal samples were compared in our study. We found that substantially more genes were differentially expressed in the NPCs than the iPSCs. Consistently, gene set variation analysis revealed that the activity of the known ASD pathways in NPCs and neural cells were significantly different from the iPSCs, suggesting that ASD occurred at the early stage of neural system development. We further constructed comprehensive brain- and neural-specific regulatory networks by incorporating transcription factor (TF) and gene interactions with long 5 non-coding RNA(lncRNA) and protein interactions. We then overlaid the transcriptomes of different cell types on the regulatory networks to infer the regulatory cascades. The variations of the regulatory cascades between ASD andmore »normal samples uncovered a set of novel disease-associated genes and gene interactions, particularly highlighting the functional roles of ELF3 and the interaction between STAT1 and lncRNA ELF3-AS 1 in the disease development. These new findings extend our understanding of ASD and offer putative new therapeutic targets for further studies.« less
  5. Abstract Motivation

    Tumor tissue samples often contain an unknown fraction of stromal cells. This problem is widely known as tumor purity heterogeneity (TPH) was recently recognized as a severe issue in omics studies. Specifically, if TPH is ignored when inferring co-expression networks, edges are likely to be estimated among genes with mean shift between non-tumor- and tumor cells rather than among gene pairs interacting with each other in tumor cells. To address this issue, we propose Tumor Specific Net (TSNet), a new method which constructs tumor-cell specific gene/protein co-expression networks based on gene/protein expression profiles of tumor tissues. TSNet treats the observed expression profile as a mixture of expressions from different cell types and explicitly models tumor purity percentage in each tumor sample.

    Results

    Using extensive synthetic data experiments, we demonstrate that TSNet outperforms a standard graphical model which does not account for TPH. We then apply TSNet to estimate tumor specific gene co-expression networks based on TCGA ovarian cancer RNAseq data. We identify novel co-expression modules and hub structure specific to tumor cells.

    Availability and implementation

    R codes can be found at https://github.com/petraf01/TSNet.

    Supplementary information

    Supplementary data are available at Bioinformatics online.