skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Five-dimensional SCFTs and gauge theory phases: an M-theory/type IIA perspective
We revisit the correspondence between Calabi-Yau (CY) threefoldisolated singularities \mathbf{X} 𝐗 and five-dimensional superconformal field theories (SCFTs), which ariseat low energy in M-theory on the space-time transverse to \mathbf{X} 𝐗 .Focussing on the case of toric CY singularities, we analyze the“gauge-theory phases” of the SCFT by exploiting fiberwise M-theory/typeIIA duality. In this setup, the low-energy gauge group simply arises onstacks of coincident D6-branes wrapping 2-cycles in some ALE space oftype A_{M-1} A M − 1 fibered over a real line, and the map between the KĂ€hler parameters of \mathbf{X} 𝐗 and the Coulomb branch parameters of the field theory (masses and VEVs)can be read off systematically. Different type IIA “reductions” giverise to different gauge theory phases, whose existence depends on theparticular (partial) resolutions of the isolated singularity \mathbf{X} 𝐗 .We also comment on the case of non-isolated toric singularities.Incidentally, we propose a slightly modified expression for theCoulomb-branch prepotential of 5d \mathcal{N}=1 đ’© = 1 gauge theories.  more » « less
Award ID(s):
1915093
PAR ID:
10165541
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
SciPost Physics
Volume:
6
Issue:
5
ISSN:
2542-4653
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    A bstract The open string sector of the topological B-model on CY ( m + 2)-folds is described by m -graded quivers with superpotentials. This correspondence generalizes the connection between CY ( m + 2)-folds and gauge theories on the worldvolume of D(5 − 2 m )-branes for m = 0 , . . . , 3 to arbitrary m . In this paper we introduce the Calabi-Yau product, a new algorithm that starting from the known quiver theories for a pair of toric CY m +2 and CY n +2 produces the quiver theory for a related CY m + n +3 . This method significantly supersedes existing ones, enabling the simple determination of quiver theories for geometries that were previously out of practical reach. 
    more » « less
  2. null (Ed.)
    A bstract We study 4 d $$ \mathcal{N} $$ N = 1 gauge theories engineered via D-branes at orientifolds of toric singularities, where gauge anomalies are cancelled without the introduction of non-compact flavor branes. Using dimer model techniques, we derive geometric criteria for establishing whether a given singularity can admit anomaly-free D-brane configurations purely based on its toric data and the type of orientifold projection. Our results therefore extend the dictionary between geometric properties of singularities and physical properties of the corresponding gauge theories. 
    more » « less
  3. A bstract Reflexive polytopes in n dimensions have attracted much attention both in mathematics and theoretical physics due to their connection to Fano n -folds and mirror symmetry. This work focuses on the 18 regular reflexive polytopes corresponding to smooth Fano 3-folds. For the first time, we show that all 18 regular reflexive polytopes have corresponding 2 d (0 , 2) gauge theories realized by brane brick models. These 2 d gauge theories can be considered as the worldvolume theories of D1-branes probing the toric Calabi-Yau 4-singularities whose toric diagrams are given by the associated regular reflexive polytopes. The generators of the mesonic moduli space of the brane brick models are shown to form a lattice of generators due to the charges under the rank 3 mesonic flavor symmetry. It is shown that the lattice of generators is the exact polar dual reflexive polytope to the corresponding toric diagram of the brane brick model. This duality not only highlights the close relationship between the geometry and 2 d gauge theory, but also opens up pathways towards new discoveries in relation to reflexive polytopes and brane brick models. 
    more » « less
  4. A long-standing problem in the study of topological phases of matter has been to understand the types of fractional topological insulator (FTI) phases possible in 3+1 dimensions. Unlike ordinary topological insulators of free fermions, FTI phases are characterized by fractional 𝜃-angles,long-range entanglement, and fractionalization. Starting from a simple family of â„€_N lattice gauge theories due to Cardy and Rabinovici, we develop a class of FTI phases based on the physical mechanism of oblique confinement and the modern language of generalized global symmetries. We dub these phases oblique topological insulators. Oblique TIs arise when dyons—bound states of electric charges and monopoles—condense, leading to FTI phases characterized by topological order, emergent one-forms symmetries, and gapped boundary states not realizable in 2+1-D alone.Based on the lattice gauge theory, we present continuum topological quantum field theories (TQFTs) for oblique TI phases involving fluctuating one-form and two-form gauge fields. We show explicitly that these TQFTs capture both the generalized global symmetries and topological orders seen in the lattice gauge theory. We also demonstrate that these theories exhibit a universal “generalized magneto-electric effect” in the presence of two-form background gauge fields. Moreover,we characterize the possible boundary topological orders of oblique TIs,finding a new set of boundary states not studied previously for these kinds of TQFTs. 
    more » « less
  5. He, Y.H.; Ge, M. L.; Bai, C.M.; Bao, J.; Hirst, E. (Ed.)
    In this brief note we explore the space of genus one and elliptic fibrations within CY manifolds, their organizing principles, and how they relate to the set of all CY manifolds. We provide examples of genus one fibered manifolds that exhibit different Hodge numbers -- and physically lead to different gauge groups - than their Jacobian fibrations. We suggest a physical mechanism for understanding this difference in twisted circle reductions of 6-dimensional compactifications of F-theory. 
    more » « less