We investigate fractionalization of non-invertible symmetry in (2+1)D topological orders. We focus on coset non-invertible symmetries obtained by gauging non-normal subgroups of invertible0 -form symmetries. These symmetries can arise as global symmetries in quantum spin liquids, given by the quotient of the projective symmetry group by a non-normal subgroup as invariant gauge group. We point out that such coset non-invertible symmetries in topological orders can exhibit symmetry fractionalization: each anyon can carry a âfractional chargeâ under the coset non-invertible symmetry given by a gauge invariant superposition of fractional quantum numbers. We present various examples using field theories and quantum double lattice models, such as fractional quantum Hall systems with charge conjugation symmetry gauged and finite group gauge theory from gauging a non-normal subgroup. They include symmetry enrichedS_3 andO(2) gauge theories. We show that such systems have a fractionalized continuous non-invertible coset symmetry and a well-defined electric Hall conductance. The coset symmetry enforces a gapless edge state if the boundary preserves the continuous non-invertible symmetry. We propose a general approach for constructing coset symmetry defects using a âsandwichâ construction: non-invertible symmetry defects can generally be constructed from an invertible defect sandwiched by condensation defects. The anomaly free condition for finite coset symmetry is also identified.
more »
« less
Theory of oblique topological insulators
A long-standing problem in the study of topological phases of matter has been to understand the types of fractional topological insulator (FTI) phases possible in 3+1 dimensions. Unlike ordinary topological insulators of free fermions, FTI phases are characterized by fractional đ-angles,long-range entanglement, and fractionalization. Starting from a simple family of â€_N lattice gauge theories due to Cardy and Rabinovici, we develop a class of FTI phases based on the physical mechanism of oblique confinement and the modern language of generalized global symmetries. We dub these phases oblique topological insulators. Oblique TIs arise when dyonsâbound states of electric charges and monopolesâcondense, leading to FTI phases characterized by topological order, emergent one-forms symmetries, and gapped boundary states not realizable in 2+1-D alone.Based on the lattice gauge theory, we present continuum topological quantum field theories (TQFTs) for oblique TI phases involving fluctuating one-form and two-form gauge fields. We show explicitly that these TQFTs capture both the generalized global symmetries and topological orders seen in the lattice gauge theory. We also demonstrate that these theories exhibit a universal âgeneralized magneto-electric effectâ in the presence of two-form background gauge fields. Moreover,we characterize the possible boundary topological orders of oblique TIs,finding a new set of boundary states not studied previously for these kinds of TQFTs.
more »
« less
- Award ID(s):
- 2225920
- PAR ID:
- 10496685
- Publisher / Repository:
- SciPost
- Date Published:
- Journal Name:
- SciPost Physics
- Volume:
- 14
- Issue:
- 2
- ISSN:
- 2542-4653
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We investigate the interplay of generalized global symmetries in 2+1 dimensions by introducing a lattice model that couples a ZN clock model to a ZN gauge theory via a topological interaction. This coupling binds the charges of one symmetry to the disorder operators of the other, and when these composite objects condense, they give rise to emergent generalized symmetries with mixed ât Hooft anomalies. These anomalies result in phases with ordinary symmetry breaking, topological order, and symmetry-protected topological (SPT) order, where the different types of order are not independent but intimately related. We further explore the gapped boundary states of these exotic phases and develop theories for phase transitions between them. Additionally, we extend our lattice model to incorporate a non-invertible global symmetry, which can be spontaneously broken, leading to domain walls with non-trivial fusion rules.more » « less
-
We consider Abelian topological quantum field theories (TQFTs) in 3D and show that gaugings of invertible global symmetries naturally give rise to additive codes. These codes emerge as nonanomalous subgroups of the 1-form symmetry group, parametrizing the fusion rules of condensable TQFT anyons. The boundary theories dual to TQFTs with a maximal symmetry subgroup gauged, i.e., with the corresponding anyons condensed, are âcodeâ conformal field theories (CFTs). This observation bridges together, in the holographic sense, results on 1-form symmetries of 3D TQFTs with developments connecting codes to 2D CFTs. Building on this relationship, we proceed to consider the ensemble of maximal gaugings (topological boundary conditions) in a general, not necessarily Abelian 3D TQFT, and propose that the resulting ensemble of boundary CFTs has a holographic description as a gravitational theory: the bulk TQFT summed over topologies.more » « less
-
A bstract We analyze topological mass terms of BF type arising in supersymmetric M-theory compactifications to AdS 5 . These describe spontaneously broken higher-form gauge symmetries in the bulk. Different choices of boundary conditions for the BF terms yield dual field theories with distinct global discrete symmetries. We discuss in detail these symmetries and their ât Hooft anomalies for 4d $$ \mathcal{N} $$ N = 1 SCFTs arising from M5-branes wrapped on a Riemann surface without punctures, including theories from M5-branes at a †2 orbifold singularity. The anomaly polynomial is computed via inflow and contains background fields for discrete global 0-, 1-, and 2-form symmetries and continuous 0-form symmetries, as well as axionic background fields. The latter are properly interpreted in the context of anomalies in the space of coupling constants.more » « less
-
We consider a SU(2) lattice gauge theory on the square lattice, with a single fundamental complex fermion and a single fundamental complex boson on each lattice site. Projective symmetries of the gauge-charged fermions are chosen so that they match with those of the spinons of the -flux spin liquid. Global symmetries of all gauge-invariant observables are chosen to match with those of the particle-hole symmetric electronic Hubbard model at half-filling. Consequently, both the fundamental fermion and fundamental boson move in an average background -flux, their gauge-invariant composite is the physical electron, and eliminating gauge fields in a strong gauge-coupling expansion yields an effective extended Hubbard model for the electrons. The SU(2) gauge theory displays several confining/Higgs phases: a nodal -wave superconductor, and states with NĂ©el, valence-bond solid, charge, or staggered current orders. There are also a number of quantum phase transitions between these phases that are very likely described by -dimensional deconfined conformal gauge theories, and we present large flavor expansions for such theories. These include the phenomenologically attractive case of a transition between a conventional insulator with a charge gap and NĂ©el order, and a conventional -wave superconductor with gapless Bogoliubov quasiparticles at four nodal points in the Brillouin zone. We also apply our approach to the honeycomb lattice, where we find a bicritical point at the junction of NĂ©el, valence bond solid (KekulĂ©), and Dirac semimetal phases. Published by the American Physical Society2024more » « less
An official website of the United States government

