- Award ID(s):
- 1763380
- NSF-PAR ID:
- 10165547
- Date Published:
- Journal Name:
- Journal of the American Chemical Society
- Volume:
- 141
- Issue:
- 44
- ISSN:
- 0002-7863
- Page Range / eLocation ID:
- 17854 to 17860
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract The gas-phase reaction of O + H 3 + has two exothermic product channels: OH + + H 2 and H 2 O + + H. In the present study, we analyze experimental data from a merged-beams measurement to derive thermal rate coefficients resolved by product channel for the temperature range from 10 to 1000 K. Published astrochemical models either ignore the second product channel or apply a temperature-independent branching ratio of 70% versus 30% for the formation of OH + + H 2 versus H 2 O + + H, respectively, which originates from a single experimental data point measured at 295 K. Our results are consistent with this data point, but show a branching ratio that varies with temperature reaching 58% versus 42% at 10 K. We provide recommended rate coefficients for the two product channels for two cases, one where the initial fine-structure population of the O( 3 P J ) reactant is in its J = 2 ground state and the other one where it is in thermal equilibrium.more » « less
-
null (Ed.)The addition of tert -butyl hydroperoxide ( t BuOOH) to two structurally related Mn II complexes containing N,N -bis(6-methyl-2-pyridylmethyl)ethane-1,2-diamine (6-Me-DPEN) and N,N -bis(6-methyl-2-pyridylmethyl)propane-1,2-diamine (6-Me-DPPN) results in the formation of high-valent bis-oxo complexes, namely di-μ-oxido-bis{[ N , N -bis(6-methyl-2-pyridylmethyl)ethane-1,2-diamine]manganese(II)}( Mn — Mn ) bis(tetraphenylborate) dihydrate, [Mn(C 16 H 22 N 4 ) 2 O 2 ](C 24 H 20 B) 2 ·2H 2 O or {[Mn IV (N 4 (6-Me-DPEN))] 2 ( μ -O) 2 }(2BPh 4 )(2H 2 O) ( 1 ) and di-μ-oxido-bis{[ N , N -bis(6-methyl-2-pyridylmethyl)propane-1,3-diamine]manganese(II)}( Mn — Mn ) bis(tetraphenylborate) diethyl ether disolvate, [Mn(C 17 H 24 N 4 ) 2 O 2 ](C 24 H 20 B) 2 ·2C 4 H 10 O or {[Mn IV (N 4 (6-MeDPPN))] 2 ( μ -O) 2 }(2BPh 4 )(2Et 2 O) ( 2 ). Complexes 1 and 2 both contain the `diamond core' motif found previously in a number of iron, copper, and manganese high-valent bis-oxo compounds. The flexibility in the propyl linker in the ligand scaffold of 2 , as compared to that of the ethyl linker in 1 , results in more elongated Mn—N bonds, as one would expect. The Mn—Mn distances and Mn—O bond lengths support an Mn IV oxidation state assignment for the Mn ions in both 1 and 2 . The angles around the Mn centers are consistent with the local pseudo-octahedral geometry.more » « less
-
Abstract Three new polynuclear clusters with the formulae [Mn10O4(OH)(OMe){(py)2C(O)2}2{(py)2C(OMe)(O)}4(MeCO2)6](ClO4)2(
1 ), Na[Mn12O2(OH)3(OMe){(py)2C(O)2}6{(py)2C(OH)(O)}2(MeCO2)2(H2O)10](ClO4)8(2 ) and [Mn12O4(OH)2{(py)2C(O)2}6{(py)2C(OMe)(O)}(MeCO2)3(NO3)3(H2O)(DMF)2](NO3)2(3 ) were prepared from the combination of di‐2‐pyridyl ketone, (py)2CO, with the aliphatic diols (1,3‐propanediol (pdH2) or 1,4‐butanediol (1,4‐bdH2)) in Mn carboxylate chemistry. The reported compounds do not include the aliphatic diols employed in this reaction scheme; however, their use is essential for the formation of1 –3 . The crystal structures of1 –3 are based on multilayer cores which, to our knowledge, are reported for the first time in Mn cluster chemistry. Direct current (dc ) magnetic susceptibility studies showed the presence of dominant antiferromagnetic exchange interactions within1 –3 . Alternating current (ac ) magnetic susceptibility studies revealed the presence of out‐of‐phase signals below 3.0 K for2 and3 indicating the slow relaxation of the magnetization vector, characteristic of single‐molecule magnets; theUeff value of2 was found to be 23 K and the preexponential factorτ0 ~7.6×10−9 s.