A series of molecular rotors was designed to study and measure the rate accelerating effects of an intramolecular hydrogen bond. The rotors form a weak neutral O–H⋯OC hydrogen bond in the planar transition state (TS) of the bond rotation process. The rotational barrier of the hydrogen bonding rotors was dramatically lower (9.9 kcal mol −1 ) than control rotors which could not form hydrogen bonds. The magnitude of the stabilization was significantly larger than predicted based on the independently measured strength of a similar O–H⋯OC hydrogen bond (1.5 kcal mol −1 ). The origins of the large transition state stabilization were studied via experimental substituent effect and computational perturbation analyses. Energy decomposition analysis of the hydrogen bonding interaction revealed a significant reduction in the repulsive component of the hydrogen bonding interaction. The rigid framework of the molecular rotors positions and preorganizes the interacting groups in the transition state. This study demonstrates that with proper design a single hydrogen bond can lead to a TS stabilization that is greater than the intrinsic interaction energy, which has applications in catalyst design and in the study of enzyme mechanisms.
more »
« less
Synthesis of unstrained Criegee intermediates: inverse α-effect and other protective stereoelectronic forces can stop Baeyer–Villiger rearrangement of γ-hydroperoxy-γ-peroxylactones
How far can we push the limits in removing stereoelectronic protection from an unstable intermediate? We address this question by exploring the interplay between the primary and secondary stereoelectronic effects in the Baeyer–Villiger (BV) rearrangement by experimental and computational studies of γ-OR-substituted γ-peroxylactones, the previously elusive non-strained Criegee intermediates (CI). These new cyclic peroxides were synthesized by the peroxidation of γ-ketoesters followed by in situ cyclization using a BF 3 ·Et 2 O/H 2 O 2 system. Although the primary effect (alignment of the migrating C–R m bond with the breaking O–O bond) is active in the 6-membered ring, weakening of the secondary effect (donation from the OR lone pair to the breaking C–R m bond) provides sufficient kinetic stabilization to allow the formation and isolation of stable γ-hydroperoxy-γ-peroxylactones with a methyl-substituent in the C6-position. Furthermore, supplementary protection is also provided by reactant stabilization originating from two new stereoelectronic factors, both identified and quantified for the first time in the present work. First, an unexpected boat preference in the γ-hydroperoxy-γ-peroxylactones weakens the primary stereoelectronic effects and introduces a ∼2 kcal mol −1 Curtin–Hammett penalty for reacquiring the more reactive chair conformation. Second, activation of the secondary stereoelectronic effect in the TS comes with a ∼2–3 kcal mol −1 penalty for giving up the exo-anomeric stabilization in the 6-membered Criegee intermediate. Together, the three new stereoelectronic factors (inverse α-effect, misalignment of reacting bonds in the boat conformation, and the exo-anomeric effect) illustrate the richness of stereoelectronic patterns in peroxide chemistry and provide experimentally significant kinetic stabilization to this new class of bisperoxides. Furthermore, mild reduction of γ-hydroperoxy-γ-peroxylactone with Ph 3 P produced an isolable γ-hydroxy-γ-peroxylactone, the first example of a structurally unencumbered CI where neither the primary nor the secondary stereoelectronic effect are impeded. Although this compound is relatively unstable, it does not undergo the BV reaction and instead follows a new mode of reactivity for the CI – a ring-opening process.
more »
« less
- Award ID(s):
- 1800329
- PAR ID:
- 10165606
- Date Published:
- Journal Name:
- Chemical Science
- Volume:
- 11
- Issue:
- 20
- ISSN:
- 2041-6520
- Page Range / eLocation ID:
- 5313 to 5322
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
A series of molecular rotors was designed to study and measure the rate accelerating effects of an intramolecular hydrogen bond. The rotors form a weak neutral O–H/O]C hydrogen bond in the planar transition state (TS) of the bond rotation process. The rotational barrier of the hydrogen bonding rotors was dramatically lower (9.9 kcal mol1) than control rotors which could not form hydrogen bonds. The magnitude of the stabilization was significantly larger than predicted based on the independently measured strength of a similar OH/OC hydrogen bond (1.5 kcal mol-1). The origins of the large transition state stabilization were studied via experimental substituent effect and computational perturbation analyses. Energy decomposition analysis of the hydrogen bonding interaction revealed a significant reduction in the repulsive component of the hydrogen bonding interaction. The rigid framework of the molecular rotors positions and preorganizes the interacting groups in the transition state. This study demonstrates that with proper design a single hydrogen bond can lead to a TS stabilization that is greater than the intrinsic interaction energy, which has applications in catalyst design and in the study of enzyme mechanisms.more » « less
-
Isopropyl 3-deoxy-α-D- ribo -hexopyranoside (isopropyl 3-deoxy-α-D-glucopyranoside), C 9 H 18 O 5 , (I), crystallizes from a methanol–ethyl acetate solvent mixture at room temperature in a 4 C 1 chair conformation that is slightly distorted towards the C5 S C1 twist-boat form. A comparison of the structural parameters in (I), methyl α-D-glucopyranoside, (II), α-D-glucopyranosyl-(1→4)-D-glucitol (maltitol), (III), and 3-deoxy-α-D- ribo -hexopyranose (3-deoxy-α-D-glucopyranose), (IV), shows that most endocyclic and exocyclic bond lengths, valence bond angles and torsion angles in the aldohexopyranosyl rings are more affected by anomeric configuration, aglycone structure and/or the conformation of exocyclic substituents, such as hydroxymethyl groups, than by monodeoxygenation at C3. The structural effects observed in the crystal structures of (I)–(IV) were confirmed though density functional theory (DFT) calculations in computed structures (I) c –(IV) c . Exocyclic hydroxymethyl groups adopt the gauche – gauche ( gg ) conformation (H5 anti to O6) in (I) and (III), and the gauche – trans ( gt ) conformation (C4 anti to O6) in (II) and (IV). The O -glycoside linkage conformations in (I) and (III) resemble those observed in disaccharides containing β-(1→4) linkages.more » « less
-
Chiglitazar is a promising new-generation insulin sensitizer with low reverse effects for the treatment of type II diabetes mellitus (T2DM) and has shown activity as a nonselective pan-agonist to the human peroxisome proliferator-activated receptors (PPARs) (i.e., full activation of PPAR γ and a partial activation of PPAR α and PPAR β / δ ). Yet, it has no high-resolution complex structure with PPARs and its detailed interactions and activation mechanism remain unclear. In this study, we docked chiglitazar into three experimentally resolved crystal structures of hPPAR subtypes, PPAR α , PPAR β / δ , and PPAR γ , followed by 3 μ s molecular dynamics simulations for each system. Our MM-GBSA binding energy calculation revealed that chiglitazar most favorably bound to hPPAR γ (-144.6 kcal/mol), followed by hPPAR α (-138.0 kcal/mol) and hPPAR β (-135.9 kcal/mol), and the order is consistent with the experimental data. Through the decomposition of the MM-GBSA binding energy by residue and the use of two-dimensional interaction diagrams, key residues involved in the binding of chiglitazar were identified and characterized for each complex system. Additionally, our detailed dynamics analyses support that the conformation and dynamics of helix 12 play a critical role in determining the activities of the different types of ligands (e.g., full agonist vs. partial agonist). Rather than being bent fully in the direction of the agonist versus antagonist conformation, a partial agonist can adopt a more linear conformation and have a lower degree of flexibility. Our finding may aid in further development of this new generation of medication.more » « less
-
The known compound K[( PO ) 2 Mn(CO) 2 ] ( PO = 2-((diphenylphosphino)methyl)-4,6-dimethylphenolate) (K[ 1 ]) was protonated to form the new Mn( i ) complex ( HPO )( PO )Mn(CO) 2 ( H 1 ) and was determined to have a p K a approximately equal to tetramethylguanidine (TMG). The reduction potential of K[ 1 ] was determined to be −0.58 V vs. Fc/Fc + in MeCN and allowed for an estimation of an experimental O–H bond dissociation free energy (BDFE O–H ) of 73 kcal mol −1 according to the Bordwell equation. This value is in good agreement with a corrected DFT computed BDFE O–H of 68.0 kcal mol −1 (70.3 kcal mol −1 for intramolecular H-bonded isomer). The coordination of the protonated O-atom in the solid-state H 1 was confirmed using FTIR spectroscopy and X-ray crystallography. The phenol moiety is hemilabile as evident from computation and experimental results. For instance, dissociation of the protonated O-atom in H 1 is endergonic by only a few kcal mol −1 (DFT). Furthermore, [ 1 ] − and other Mn( i ) compounds coordinated to PO and/or HPO do not react with MeCN, but H 1 reacts with MeCN to form H 1 + MeCN . Experimental evidence for the solution-bound O-atoms of H 1 was obtained from 1 H NMR and UV-vis spectroscopy and by comparing the electronic spectra of bona fide 16-e − Mn( i ) complexes such as [{ PNP }Mn(CO) 2 ] ( PNP = − N{CH 2 CH 2 (P i Pr 2 )} 2 ) and [( Me3SiOP )( PO )Mn(CO) 2 ] ( Me3Si 1 ). Compound H 1 is only meta-stable ( t 1/2 0.5–1 day) and decomposes into products consistent with homolytic O–H bond cleavage. For instance, treatment of H 1 with TEMPO resulted in formation of TEMPOH, free ligand, and [Mn II {( PO ) 2 Mn(CO) 2 } 2 ]. Together with the experimental and calculated weakened BDFE O–H , these data provide strong evidence for the coordination and hemilability of the protonated O-atom in H 1 and represents the first example of the phenolic Mn( i )–O linkage and a rare example of a “soft-homolysis” intermediate in the bond-weakening catalysis paradigm.more » « less
An official website of the United States government

