skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: In Situ Temporal Periodic Poling of Lithium Niobate Thin Films
We repeatedly pole and unpole a lithium niobate thin film second harmonic generator while monitoring the switching of the optical output. Increasing asymmetry in the poling waveform results in increasing optical extinction ratio.  more » « less
Award ID(s):
1809894
PAR ID:
10165677
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Conference on Lasers and Electro-Optics
Page Range / eLocation ID:
SW3F.3
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Molecular vibrations are generally responsible for chemical energy transport and dissipation in molecular systems. This transport is fast and efficient if energy is transferred by optical phonons in periodic oligomers, but its efficiency is limited by decoherence emerging due to anharmonic interactions with acoustic phonons. Using a general theoretical model, we show that in the most common case of the optical phonon band being narrower than the acoustic bands, decoherence takes place in two stages. The faster stage involves optical phonon multiple forward scattering due to absorption and emission of transverse acoustic phonons, i.e., collective bending modes with a quadratic spectrum; the transport remains ballistic and the speed can be altered. The subsequent slower stage involves phonon backscattering in multiphonon processes involving two or more acoustic phonons resulting in a switch to diffusive transport. If the initially excited optical phonon possesses a relatively small group velocity, then it is accelerated in the first stage due to its transitions to states propagating faster. This theoretical expectation is consistent with the recent measurements of optical phonon transport velocity in alkane chains, increasing with increasing the chain length. 
    more » « less
  2. Optical tweezer is a non-contact tool to trap and manipulate microparticles such as biological cells using coherent light beams. In this study, we utilized a dual-beam optical tweezer, created using two counterpropagating and slightly divergent laser beams to trap and deform biological cells. Human embryonic kidney 293 (HEK-293) and breast cancer (SKBR3) cells were used to characterize their membrane elasticity by optically stretching in the dual-beam optical tweezer. It was observed that the extent of deformation in both cell types increases with increasing optical trapping power. The SKBR3 cells exhibited greater percentage deformation than that of HEK-293 cells for a given trapping power. Our results demonstrate that the dual-beam optical tweezer provides measures of cell elasticity that can distinguish between various cell types. The non-contact optical cell stretching can be effectively utilized in disease diagnosis such as cancer based on the cell elasticity measures. 
    more » « less
  3. Linking superconducting quantum devices to optical fibers via microwave-optical quantum transducers may enable large-scale quantum networks. For this application, transducers based on the Pockels electro-optic (EO) effect are promising for their direct conversion mechanism, high bandwidth, and potential for low-noise operation. However, previously demonstrated EO transducers require large optical pump power to overcome weak EO coupling and reach high efficiency. Here, we create an EO transducer in thin-film lithium niobate, a platform that provides low optical loss and strong EO coupling. We demonstrate on-chip transduction efficiencies of up toandof optical pump power. The transduction efficiency can be improved by further reducing the microwave resonator’s piezoelectric coupling to acoustic modes, increasing the optical resonator quality factor to previously demonstrated levels, and changing the electrode geometry for enhanced EO coupling. We expect that with further development, EO transducers in thin-film lithium niobate can achieve near-unity efficiency with low optical pump power. 
    more » « less
  4. Cross quadrature correlations are observed from the spectral matrices of two-mode bright states generated in an integrated optical parametric oscillator. We attribute degradation of amplitude difference squeezing with increasing pump intensities to this effect. 
    more » « less
  5. Supercontinuum (SC) sources offer high illumination power from a single-mode fiber with large spectral bandwidth including the visible spectrum, which is a growing application area for optical coherence tomography (OCT). However, SC spectra suffer from pulse-to-pulse variations, increasing noise in the resulting images. By simultaneously collecting a normalization spectrum, OCT image noise can be reduced by more than half (7 dB) for single pulses without any pulse averaging using only simple optical components. 
    more » « less