Wavelength transduction of single-photon signals is indispensable to networked quantum applications, particularly those incorporating quantum memories. Lithium niobate nanophotonic devices have demonstrated favorable linear, nonlinear, and electro-optical properties to deliver this crucial function while offering superior efficiency, integrability, and scalability. Yet, their quantum noise level—a crucial metric for any single-photon-based application—has yet to be investigated. In this work, we report the first, to the best of our knowledge, study with the focus on telecom to near-visible conversion driven by a small detuned telecom pump for practical considerations in distributed quantum processing over fiber networks. Our results find the noise level to be on the order of photons per time-frequency mode for high conversion, allowing faithful pulsed operations. Through carefully analyzing the origins of such noise and each’s dependence on the pump power and wavelength detuning, we have also identified a formula for noise suppression to photons per mode. Our results assert a viable, low-cost, and modular approach to networked quantum processing and beyond using lithium niobate nanophotonics.
more »
« less
Cavity electro-optics in thin-film lithium niobate for efficient microwave-to-optical transduction
Linking superconducting quantum devices to optical fibers via microwave-optical quantum transducers may enable large-scale quantum networks. For this application, transducers based on the Pockels electro-optic (EO) effect are promising for their direct conversion mechanism, high bandwidth, and potential for low-noise operation. However, previously demonstrated EO transducers require large optical pump power to overcome weak EO coupling and reach high efficiency. Here, we create an EO transducer in thin-film lithium niobate, a platform that provides low optical loss and strong EO coupling. We demonstrate on-chip transduction efficiencies of up toandof optical pump power. The transduction efficiency can be improved by further reducing the microwave resonator’s piezoelectric coupling to acoustic modes, increasing the optical resonator quality factor to previously demonstrated levels, and changing the electrode geometry for enhanced EO coupling. We expect that with further development, EO transducers in thin-film lithium niobate can achieve near-unity efficiency with low optical pump power.
more »
« less
- Award ID(s):
- 1839197
- PAR ID:
- 10204838
- Publisher / Repository:
- Optical Society of America
- Date Published:
- Journal Name:
- Optica
- Volume:
- 7
- Issue:
- 12
- ISSN:
- 2334-2536
- Format(s):
- Medium: X Size: Article No. 1714
- Size(s):
- Article No. 1714
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Materials with strong second-order ( ) optical nonlinearity, especially lithium niobate, play a critical role in building optical parametric oscillators (OPOs). However, chip-scale integration of low-loss materials remains challenging and limits the threshold power of on-chip OPO. Here we report an on-chip lithium niobate optical parametric oscillator at the telecom wavelengths using a quasi-phase-matched, high-quality microring resonator, whose threshold power ( ) is 400 times lower than that in previous integrated photonics platforms. An on-chip power conversion efficiency of 11% is obtained from pump to signal and idler fields at a pump power of 93 µW. The OPO wavelength tuning is achieved by varying the pump frequency and chip temperature. With the lowest power threshold among all on-chip OPOs demonstrated so far, as well as advantages including high conversion efficiency, flexibility in quasi-phase-matching, and device scalability, the thin-film lithium niobate OPO opens new opportunities for chip-based tunable classical and quantum light sources and provides a potential platform for realizing photonic neural networks.more » « less
-
Thin-film lithium niobate is an attractive integrated photonics platform due to its low optical loss and favorable optical nonlinear and electro-optic properties. However, in applications such as second harmonic generation, frequency comb generation, and microwave-to-optics conversion, the device performance is strongly impeded by the photorefractive effect inherent in thin-film lithium niobate. In this paper, we show that the dielectric cladding on a lithium niobate microring resonator has a significant influence on the photorefractive effect. By removing the dielectric cladding layer, the photorefractive effect in lithium niobate ring resonators can be effectively mitigated. Our work presents a reliable approach to control the photorefractive effect on thin-film lithium niobate and will further advance the performance of integrated classical and quantum photonic devices based on thin-film lithium niobate.more » « less
-
Thin-film lithium niobate has emerged as an excellent, multifaceted platform for integrated photonics and opto-electronics, in both classical and quantum domains. We introduce a novel, to the best of our knowledge, dual-capacitor electrode layout for an efficient interface between electrical and optical signals on this platform. It significantly enhances the electro-optical modulation efficiency to an exceptional voltage–length product of , thereby lowering the required electric power by many times. This technique can boost the performance of growing applications at the interface of integrated electronics and optics, such as microwave photonics, frequency comb generation, and telecommunication transmission.more » « less
-
Second-harmonic generation (SHG) plays a significant role in modern photonic technology. Integrated photonic resonators fabricated with thin-film lithium niobate can achieve ultrahigh efficiencies by combining small mode volumes with high material nonlinearity. Cavity-enhanced SHG requires accurate phase and frequency matching conditions, where fundamental and second-harmonic wavelengths are both on resonance. However, this double-resonance condition can typically be realized only at a fixed random wavelength due to the high sensitivity of photonic resonances to the device geometry and fabrication variations. Here, we propose a novel method that can achieve the double-resonance condition over a large wavelength range. We combine thermal-optic and electro-optic (EO) effects to realize the separate tuning of fundamental and second-harmonic resonances. We demonstrated that the optimum SHG efficiency can be maintained over a wavelength range that exceeds the limit achievable with only thermal tuning. With this flexible tuning capability, we further show the precise alignment of SHG wavelengths of two separate thin-film lithium niobate resonators without sacrificing efficiencies.more » « less
An official website of the United States government
