skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Tunable Optical Bragg Grating Filter Based on the Droplet Sagging Effect on a Superhydrophobic Nanopillar Array
Nanostructures have been widely applied on superhydrophobic surfaces for controlling the wetting states of liquid microdroplets. Many modern optic devices including sensors are also integrated with micro- or nanostructures for function enhancement. However, it is rarely reported that both microfluidics and optics are compatibly integrated in the same nanostructures. In this paper, a novel microfluidic-controlled tunable filter composed of an array of periodic micro/nanopillars on top of a planar waveguide is proposed and numerically simulated, in which the periodic pillars endow both the Bragg grating and the superhydrophobic functions. The tunability of grating is achieved by controlling the sagging depth of a liquid droplet into the periodic pillars. Simulation results show that a narrow bandwidth of 0.4 nm and a wide wavelength tuning range over 25 nm can be achieved by such a microfluidic-based tunable optofluidic waveguide Bragg grating filter. Moreover, this proposed scheme can be easily modified as a refractive index sensor with a sensitivity of 103 nm per refractive index unit.  more » « less
Award ID(s):
1808931
PAR ID:
10165741
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Sensors
Volume:
19
Issue:
15
ISSN:
1424-8220
Page Range / eLocation ID:
3324
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Photonic integrated circuits based on ultralow loss silicon nitride waveguides have shown significant promise for realizing high-performance optical systems in a compact and scalable form factor. For the first time, we have developed a Fabry-Perot Bragg grating nanoresonator based on silicon nitride on silicon dioxide platform with an ultra-high intrinsic quality factor of 19.3 million. By combining the introduction of tapered grating between cavity and periodic Bragg grating, increasing the width of cavity to multi-mode region and optimized annealing strategy for Si3N4film, the propagation loss is reduced to around 0.014 dB/cm. Fabry-Perot Bragg grating nanoresonator can be easily implemented in a simple straight waveguide occupying a minimal amount of space. Therefore, it is a key component to build a high performance photonic integrated circuit for many applications. 
    more » « less
  2. This theoretical modeling and simulation paper presents designs and projected performance of an on-chip digital Fourier transform spectrometer using a thermo-optical (TO) Michelson grating interferometer operating at∼1550 and 2000 nm for silicon-on-insulator and for germanium-on-silicon technological platforms, respectively. The Michelson interferometer arms consist of two unbalanced tunable optical delay lines operating in the reflection mode. They are comprised of a cascade connection of waveguide Bragg grating resonators (WBGRs) separated by a piece of straight waveguide with lengths designed according to the spectrometer resolution requirements. The length of eachWBGRis chosen according to the Butterworth filter technique to provide one resonant spectral profile with a bandwidth twice that of the spectrometer bandwidth. A selectable optical path difference (OPD) between the arms is obtained by shifting the notch in the reflectivity spectrum along the wavelength axis by means of a low-power TO heater stripe atop the WBGR, inducing an OPD that depends on the line position of the WBGR affected by TO switching.We examined the device performances in terms of signal recostruction in the radio-frequency (RF) spectrum analysis application at 1 GHz and at 1.5 GHz of spectrometer resolution. The investigation demonstrated that high-quality spectrum reconstruction is obtained for both Lorentzian and arbitrary input signals with a bandwidth up to 40 GHz. We also show that spectrum reconstruction of 100–200 GHz RF band input signals is feasible in the Ge-on-Si chips. 
    more » « less
  3. Bragg gratings offer high-performance filtering and routing of light on-chip through a periodic modulation of a waveguide’s effective refractive index. Here, we model and experimentally demonstrate the use of Sb2Se3, a nonvolatile and transparent phase-change material, to tune the resonance conditions in two devices which leverage periodic Bragg gratings—a stopband filter and Fabry-Perot cavity. Through simulations, we show that similar refractive indices between silicon and amorphous Sb2Se3can be used to induce broadband transparency, while the crystalline state can enhance the index contrast in these Bragg devices. Our experimental results show the promise and limitations of this design approach and highlight specific fabrication challenges which need to be addressed in future implementations. 
    more » « less
  4. We introduce and experimentally demonstrate a miniaturized integrated spectrometer operating over a broad bandwidth in the short-wavelength infrared (SWIR) spectrum that combines an add-drop ring resonator narrow band filter with a distributed Bragg reflector (DBR) based broadband filter realized in a silicon photonic platform. The contra-directional coupling DBR filter in this design consists of a pair of waveguide sidewall gratings that act as a broadband filter (i.e., 3.9 nm). The re-directed beam is then fed into the ring resonator which functions as a narrowband filter (i.e., 0.121 nm). In this scheme the free spectral range (FSR) limitation of the ring resonator is overcome by using the DBR as a filter to isolate a single ring resonance line. The overall design of the spectrometer is further simplified by simultaneously tuning both components through the thermo-optic effect. Moreover, several ring-grating spectrometer cells with different central wavelengths can be stacked in cascade in order to cover a broader spectrum bandwidth. This can be done by centering each unit cell on a different center wavelength such that the maximum range of one-unit cell corresponds to the minimum range of the next unit cell. This configuration enables high spectral resolution over a large spectral bandwidth and high extinction ratio (ER), making it suitable for a wide variety of applications. 
    more » « less
  5. Abstract Bulk transition metal dichalcogenide (TMDC) nanostructures are regarded as promising material candidates for integrated photonics due to their high refractive index at the near‐infrared wavelengths. In this work, colloidal TMDC waveguides with tailorable dimensions are prepared by a scalable synthetic approach. The optical waveguiding properties of colloidal nanowires are studied by the near‐field nanoimaging technique. In addition to dependence on thickness and wavelength, the excitonic responses and resultant waveguide modes in TMDC nanowires can be modulated by the environmental temperature. With the high‐throughput production and tunable optical properties, colloidal TMDC nanowires highlight the potential for active optical components and integrated photonic devices. 
    more » « less