skip to main content


Title: Nonvolatile tuning of Bragg structures using transparent phase-change materials

Bragg gratings offer high-performance filtering and routing of light on-chip through a periodic modulation of a waveguide’s effective refractive index. Here, we model and experimentally demonstrate the use of Sb2Se3, a nonvolatile and transparent phase-change material, to tune the resonance conditions in two devices which leverage periodic Bragg gratings—a stopband filter and Fabry-Perot cavity. Through simulations, we show that similar refractive indices between silicon and amorphous Sb2Se3can be used to induce broadband transparency, while the crystalline state can enhance the index contrast in these Bragg devices. Our experimental results show the promise and limitations of this design approach and highlight specific fabrication challenges which need to be addressed in future implementations.

 
more » « less
NSF-PAR ID:
10458023
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
Optical Society of America
Date Published:
Journal Name:
Optical Materials Express
Volume:
13
Issue:
10
ISSN:
2159-3930
Page Range / eLocation ID:
Article No. 2700
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The generation of rapidly tunable optical vortex (OV) beams is one of the most demanding research areas of the present era as they possess orbital angular momentum (OAM) with additional degrees of freedom that can be exploited to enhance signal‐carrying capacity by using mode division multiplexing and information encoding in optical communication. Particularly, rapidly tunable OAM devices at a fixed wavelength in the telecom band stir extensive interest among researchers for both classical and quantum applications. This article demonstrates the realistic design of a Si‐integrated photonic device for rapidly tunable OAM wave generation at a 1550‐nm wavelength by using an ultra‐low‐loss phase change material (PCM) embedded with a Si‐ring resonator with angular gratings. Different OAM modes are achieved by tuning the effective refractive index using rapid electrical switching of Sb2Se3 film from amorphous to crystalline states and vice versa. The generation of OAM waves relies on a traveling wave modulation of the refractive index of the micro‐ring, which breaks the degeneracy of oppositely oriented whispering gallery modes. The proposed device is capable of producing rapidly tunable OV beams, carrying different OAM modes by using electrically controllable switching of ultra‐low‐loss PCM Sb2Se3.

     
    more » « less
  2. In this work, we explore inverse designed reconfigurable digital metamaterial structures based on phase change material Sb2Se3for efficient and compact integrated nanophotonics. An exemplary design of a 1 × 2 optical switch consisting of a 3 µm x 3 µm pixelated domain is demonstrated. We show that: (i) direct optimization of a domain containing only Si and Sb2Se3pixels does not lead to a high extinction ratio between output ports in the amorphous state, which is owed to the small index contrast between Si and Sb2Se3in such a state. As a result, (ii) topology optimization, e.g., the addition of air pixels, is required to provide an initial asymmetry that aids the amorphous state's response. Furthermore, (iii) the combination of low loss and high refractive index change in Sb2Se3, which is unique among all phase change materials in the telecommunications 1550 nm band, translates into an excellent projected performance; the optimized device structure exhibits a low insertion loss (∼1.5 dB) and high extinction ratio (>18 dB) for both phase states.

     
    more » « less
  3. This paper discusses the terahertz electromagnetic response of metallic gratings on anisotropic dielectric substrates. The metallic gratings consist of parallel gold stripes. Utilizing numerical simulations, we observe that it is possible to excite a series of resonant modes in these structures. These modes are affected differently by the different indices on the anisotropic substrate. An analytical model is discussed to show that modes associated with transmission peaks are due to the excitation of (a) Fabry–Pérot modes with polarization along the grating and/or (b) waveguide modes with polarization perpendicular to the grating. It is observed that the resonance associated with the TM1,1mode is a narrow linewidth resonance which, in some particular circumstances, becomes nearly independent of substrate thickness. Therefore, from the spectral position of this resonance, it is possible to extract the out-of-plane component of the substrate refractive index with very small uncertainty. Based on this observation, we demonstrate the refractive index characterization of several lossless semiconductor substrates through frequency-domain polarized terahertz transmission measurements in the frequency range of 0.2–0.6 THz at normal incidence. The reliability of the technique is demonstrated on well-known materials, such as high-resistivity silicon and sapphire substrates. This technique is also applied for the characterization of a Fe-doped β-Ga2O3single-crystal substrate.

     
    more » « less
  4. Nanostructures have been widely applied on superhydrophobic surfaces for controlling the wetting states of liquid microdroplets. Many modern optic devices including sensors are also integrated with micro- or nanostructures for function enhancement. However, it is rarely reported that both microfluidics and optics are compatibly integrated in the same nanostructures. In this paper, a novel microfluidic-controlled tunable filter composed of an array of periodic micro/nanopillars on top of a planar waveguide is proposed and numerically simulated, in which the periodic pillars endow both the Bragg grating and the superhydrophobic functions. The tunability of grating is achieved by controlling the sagging depth of a liquid droplet into the periodic pillars. Simulation results show that a narrow bandwidth of 0.4 nm and a wide wavelength tuning range over 25 nm can be achieved by such a microfluidic-based tunable optofluidic waveguide Bragg grating filter. Moreover, this proposed scheme can be easily modified as a refractive index sensor with a sensitivity of 103 nm per refractive index unit. 
    more » « less
  5. In this paper, we discuss flat programmable multi-level diffractive lenses (PMDL) enabled by phase change materials working in the near-infrared and visible ranges. The high real part refractive index contrast (Δn ∼ 0.6) of Sb 2 S 3 between amorphous and crystalline states, and extremely low losses in the near-infrared, enable the PMDL to effectively shift the lens focus when the phase of the material is altered between its crystalline and amorphous states. In the visible band, although losses can become significant as the wavelength is reduced, the lenses can still provide good performance as a result of their relatively small thickness (∼ 1.5λ to 3λ). The PMDL consists of Sb 2 S 3 concentric rings with equal width and varying heights embedded in a glass substrate. The height of each concentric ring was optimized by a modified direct binary search algorithm. The proposed designs show the possibility of realizing programmable lenses at design wavelengths from the near-infrared (850 nm) up to the blue (450 nm) through engineering PMDLs with Sb 2 S 3 . Operation at these short wavelengths, to the best of our knowledge, has not been studied so far in reconfigurable lenses with phase-change materials. Therefore, our results open a wider range of applications for phase-change materials, and show the prospect of Sb 2 S 3 for such applications. The proposed lenses are polarization insensitive and can have the potential to be applied in dual-functionality devices, optical imaging, and biomedical science. 
    more » « less