skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Piezo2 integrates mechanical and thermal cues in vertebrate mechanoreceptors
Tactile information is detected by thermoreceptors and mechanoreceptors in the skin and integrated by the central nervous system to produce the perception of somatosensation. Here we investigate the mechanism by which thermal and mechanical stimuli begin to interact and report that it is achieved by the mechanotransduction apparatus in cutaneous mechanoreceptors. We show that moderate cold potentiates the conversion of mechanical force into excitatory current in all types of mechanoreceptors from mice and tactile-specialist birds. This effect is observed at the level of mechanosensitive Piezo2 channels and can be replicated in heterologous systems using Piezo2 orthologs from different species. The cold sensitivity of Piezo2 is dependent on its blade domains, which render the channel resistant to cold-induced perturbations of the physical properties of the plasma membrane and give rise to a different mechanism of mechanical activation than that of Piezo1. Our data reveal that Piezo2 is an evolutionarily conserved mediator of thermal–tactile integration in cutaneous mechanoreceptors.  more » « less
Award ID(s):
1923127
PAR ID:
10165944
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
116
Issue:
35
ISSN:
0027-8424
Page Range / eLocation ID:
17547 to 17555
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Saitis, C.; Farkhatdinov, I; Papetti, S. (Ed.)
    There are fundamental differences between the tactile and thermal sensory systems that must be accommodated when designing multisensory cutaneous displays for use in virtual or teleoperated robotic environments. In this review we highlight the marked temporal and spatial differences between the senses of cold and warmth as revealed in psychophysical experiments. Cold and warmth are distinct senses with marked differences in the time taken to respond to stimulation and in their temporal filtering processes. Such variations must be taken into account when time-varying profiles of thermal stimulation are delivered to the skin concurrent with tactile stimulation since the resulting sensations will not be perceived on the same time scale. Although it is often reported that the thermal senses are markedly inferior to the sense of touch with respect to their spatial acuity, it is also clear that there is considerable variability across the body in the accuracy with which thermal stimuli can be localized. The distal to proximal gradient in thermal acuity suggests that locations other than the palmar surface of the hand are better suited for displaying thermal cues, in contrast to the situation for tactile inputs. As was noted for temporal processes, there are differences between localizing warmth and cold stimuli, with localization being superior for cold. These properties provide benchmarks that can be used in designing thermal and multisensory displays. 
    more » « less
  2. Multisensory cutaneous displays have been developed to enhance the realism of objects touched in virtual environments. However, when stimuli are presented concurrently, tactile stimuli can mask thermal perception and so both these modalities may not be available to convey information to the user. In this study, we aim to determine the simultaneity window using the Simultaneity Judgment Task. A device was created that could present both tactile and thermal stimuli to the thenar eminence of the participant’s left hand with various stimulus onset asynchronies (SOA). The experimental results indicated that the simultaneity window width was 639 ms ranging from -561 ms to 78 ms. The point of subjective simultaneity (PSS) was at -242 ms, indicating that participants perceived simultaneity best when the thermal stimulus preceded the tactile stimulus by 242 ms. These findings have implications for the design of stimulus presentation in multisensory cutaneous displays. 
    more » « less
  3. null (Ed.)
    Two PIEZO mechanosensitive cation channels, PIEZO1 and PIEZO2, have been identified in mammals, where they are involved in numerous sensory processes. While structurally similar, PIEZO channels are expressed in distinct tissues and exhibit unique properties. How different PIEZOs transduce force, how their transduction mechanism varies, and how their unique properties match the functional needs of the distinct tissues where they are expressed remain all-important unanswered questions. The nematode Caenorhabditis elegans has a single PIEZO ortholog (pezo-1) predicted to have twelve isoforms. These isoforms share many transmembrane domains, but differ in those that distinguish PIEZO1 and PIEZO2 in mammals. Here we use translational and transcriptional reporters to show that long pezo-1 isoforms are selectively expressed in mesodermally derived tissues (such as muscle and glands). In contrast, shorter pezo-1 isoforms are primarily expressed in neurons. In the digestive system, different pezo-1 isoforms appear to be expressed in different cells of the same organ. We show that pharyngeal muscles, glands, and valve rely on long pezo-1 isoforms to respond appropriately to the presence of food. The unique pattern of complementary expression of pezo-1 isoforms suggest that different isoforms possess distinct functions. The number of pezo-1 isoforms in C. elegans, their differential pattern of expression, and their roles in experimentally tractable processes make this an attractive system to investigate the molecular basis for functional differences between members of the PIEZO family of mechanoreceptors. 
    more » « less
  4. Zetka, M (Ed.)
    Abstract Two PIEZO mechanosensitive cation channels, PIEZO1 and PIEZO2, have been identified in mammals, where they are involved in numerous sensory processes. While structurally similar, PIEZO channels are expressed in distinct tissues and exhibit unique properties. How different PIEZOs transduce force, how their transduction mechanism varies, and how their unique properties match the functional needs of the tissues they are expressed in remain all-important unanswered questions. The nematode Caenorhabditis elegans has a single PIEZO ortholog (pezo-1) predicted to have 12 isoforms. These isoforms share many transmembrane domains but differ in those that distinguish PIEZO1 and PIEZO2 in mammals. We used transcriptional and translational reporters to show that putative promoter sequences immediately upstream of the start codon of long pezo-1 isoforms predominantly drive green fluorescent protein (GFP) expression in mesodermally derived tissues (such as muscle and glands). In contrast, sequences upstream of shorter pezo-1 isoforms resulted in GFP expression primarily in neurons. Putative promoters upstream of different isoforms drove GFP expression in different cells of the same organs of the digestive system. The observed unique pattern of complementary expression suggests that different isoforms could possess distinct functions within these organs. We used mutant analysis to show that pharyngeal muscles and glands require long pezo-1 isoforms to respond appropriately to the presence of food. The number of pezo-1 isoforms in C. elegans, their putative differential pattern of expression, and roles in experimentally tractable processes make this an attractive system to investigate the molecular basis for functional differences between members of the PIEZO family of mechanoreceptors. 
    more » « less
  5. null (Ed.)
    In this work, we investigated the classification of texture by neuromorphic tactile encoding and an unsupervised learning method. Additionally, we developed an adaptive classification algorithm to detect and characterize the presence of new texture data. The neuromorphic tactile encoding of textures from a multilayer tactile sensor was based on the physical structure and afferent spike signaling of human glabrous skin mechanoreceptors. We explored different neuromorphic spike pattern metrics and dimensionality reduction techniques in order to maximize classification accuracy while improving computational efficiency. Using a dataset composed of 3 textures, we showed that unsupervised learning of the neuromorphic tactile encoding data had high classification accuracy (mean=86.46%, sd=5 .44%). Moreover, the adaptive classification algorithm was successful at determining that there were 3 underlying textures in the training dataset. In this work, tactile information is transformed into neuromorphic spiking activity that can be used as a stimulation pattern to elicit texture sensation for prosthesis users. Furthermore, we provide the basis for identifying new textures adaptively which can be used to actively modify stimulation patterns to improve texture discrimination for the user. 
    more » « less