skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 5:00 PM ET until 11:00 PM ET on Friday, June 21 due to maintenance. We apologize for the inconvenience.


Title: Electrophoretic deposition of iron oxide nanoparticles to achieve thick nickel/iron oxide magnetic nanocomposite films
Award ID(s):
1727930
NSF-PAR ID:
10166111
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
AIP Advances
Volume:
10
Issue:
1
ISSN:
2158-3226
Page Range / eLocation ID:
015308
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Long duration energy storage (LDES) is an economically attractive approach to accelerating clean renewable energy deployment. The newly emerged solid oxide iron–air battery (SOIAB) is intrinsically suited for LDES applications due to its excellent low‐rate performance (high‐capacity with high efficiency) and use of low‐cost and sustainable materials. However, rechargeability and durability of SOIAB are critically limited by the slow kinetics in iron/iron‐oxide redox couples. Here the use of combined proton‐conducting BaZr0.4Ce0.4Y0.1Yb0.1O3(BZC4YYb) and reduction‐promoting catalyst Ir to address the kinetic issues, is reported. It is shown that, benefiting from the facilitated H+diffusion and boosted FeOx‐reduction kinetics, the battery operated under 550 °C, 50% Fe‐utilization and 0.2 C, exhibits a discharge specific energy density of 601.9 Wh kg–1‐Fe with a round‐trip efficiency (RTE) of 82.9% for 250 h of a cycle duration of 2.5 h. Under 500 °C, 50% Fe‐utilization and 0.2 C, the same battery exhibits 520 Wh kg–1‐Fe discharge energy density with an RTE of 61.8% for 500 h. This level of energy storage performance promises that SOIAB is a strong candidate for LDES applications.

     
    more » « less
  2. Abstract

    Iron oxide copper-gold (IOCG) and iron oxide-apatite (IOA) deposits are major sources of Fe, Cu, and Au. Magnetite is the modally dominant and commodity mineral in IOA deposits, whereas magnetite and hematite are predominant in IOCG deposits, with copper sulfides being the primary commodity minerals. It is generally accepted that IOCG deposits formed by hydrothermal processes, but there is a lack of consensus for the source of the ore fluid(s). There are multiple competing hypotheses for the formation of IOA deposits, with models that range from purely magmatic to purely hydrothermal. In the Chilean iron belt, the spatial and temporal association of IOCG and IOA deposits has led to the hypothesis that IOA and IOCG deposits are genetically connected, where S-Cu-Au–poor magnetite-dominated IOA deposits represent the stratigraphically deeper levels of S-Cu-Au–rich magnetite- and hematite-dominated IOCG deposits. Here we report minor element and Fe and O stable isotope abundances for magnetite and H stable isotope abundances for actinolite from the Candelaria IOCG deposit and Quince IOA prospect in the Chilean iron belt. Backscattered electron imaging reveals textures of igneous and magmatic-hydrothermal affinities and the exsolution of Mn-rich ilmenite from magnetite in Quince and deep levels of Candelaria (>500 m below the bottom of the open pit). Trace element concentrations in magnetite systematically increase with depth in both deposits and decrease from core to rim within magnetite grains in shallow samples from Candelaria. These results are consistent with a cooling trend for magnetite growth from deep to shallow levels in both systems. Iron isotope compositions of magnetite range from δ56Fe values of 0.11 ± 0.07 to 0.16 ± 0.05‰ for Quince and between 0.16 ± 0.03 and 0.42 ± 0.04‰ for Candelaria. Oxygen isotope compositions of magnetite range from δ18O values of 2.65 ± 0.07 to 3.33 ± 0.07‰ for Quince and between 1.16 ± 0.07 and 7.80 ± 0.07‰ for Candelaria. For cogenetic actinolite, δD values range from –41.7 ± 2.10 to –39.0 ± 2.10‰ for Quince and from –93.9 ± 2.10 to –54.0 ± 2.10‰ for Candelaria, and δ18O values range between 5.89 ± 0.23 and 6.02 ± 0.23‰ for Quince and between 7.50 ± 0.23 and 7.69 ± 0.23‰ for Candelaria. The paired Fe and O isotope compositions of magnetite and the H isotope signature of actinolite fingerprint a magmatic source reservoir for ore fluids at Candelaria and Quince. Temperature estimates from O isotope thermometry and Fe# of actinolite (Fe# = [molar Fe]/([molar Fe] + [molar Mg])) are consistent with high-temperature mineralization (600°–860°C). The reintegrated composition of primary Ti-rich magnetite is consistent with igneous magnetite and supports magmatic conditions for the formation of magnetite in the Quince prospect and the deep portion of the Candelaria deposit. The trace element variations and zonation in magnetite from shallower levels of Candelaria are consistent with magnetite growth from a cooling magmatic-hydrothermal fluid. The combined chemical and textural data are consistent with a combined igneous and magmatic-hydrothermal origin for Quince and Candelaria, where the deeper portion of Candelaria corresponds to a transitional phase between the shallower IOCG deposit and a deeper IOA system analogous to the Quince IOA prospect, providing evidence for a continuum between both deposit types.

     
    more » « less
  3. null (Ed.)
    The Mantoverde iron oxide-copper-gold (IOCG) deposit, Chile, contains hundreds of millions of tonnes (Mt) of mineable iron oxide and copper sulfide ore.While there is an agreement that mineralization at Mantoverde was caused by hydrothermal fluid(s), there is a lack of consensus for the role(s) that non-magmatic vs. magmatic fluid(s) played during the evolution of the mineralized system. In order to overcome the hydrothermal overprint at Mantoverde, which is known to disturb most conventional stable isotope systems (e.g., oxygen), we report the first δ56Fe and δ18O pairs for early-stage magnetite and late-stage hematite that provide information on the source reservoir of the hydrothermal fluids. Magnetite δ56Fe values range from 0.46 ± 0.04 to 0.58 ± 0.02‰and average 0.51 ± 0.16‰(n = 10; 2σ). Three hematite δ56Fe values were measured to be 0.34 ± 0.10, 0.42 ± 0.09, and 0.46 ± 0.06. Magnetite δ18O values range from 0.69 ± 0.04 to 4.61 ± 0.05‰ and average 2.99 ± 2.70‰ (n = 9; 2σ). Hematite δ18O values range from − 1.36 ± 0.05 to 5.57 ± 0.05‰and average 0.10 ± 5.38‰(n = 6; 2σ). These new δ56Fe and δ18O values fingerprint a magmatic-hydrothermal fluid as the predominant ore-forming fluid responsible for mineralization in the Mantoverde system. 
    more » « less
  4. null (Ed.)
    Mononitrosyl and dinitrosyl iron species, such as {FeNO} 7 , {FeNO} 8 and {Fe(NO) 2 } 9 , have been proposed to play pivotal roles in the nitrosylation processes of nonheme iron centers in biological systems. Despite their importance, it has been difficult to capture and characterize them in the same scaffold of either native enzymes or their synthetic analogs due to the distinct structural requirements of the three species, using redox reagents compatible with biomolecules under physiological conditions. Here, we report the realization of stepwise nitrosylation of a mononuclear nonheme iron site in an engineered azurin under such conditions. Through tuning the number of nitric oxide equivalents and reaction time, controlled formation of {FeNO} 7 and {Fe(NO) 2 } 9 species was achieved, and the elusive {FeNO} 8 species was inferred by EPR spectroscopy and observed by Mössbauer spectroscopy, with complemental evidence for the conversion of {FeNO} 7 to {Fe(NO) 2 } 9 species by UV-Vis, resonance Raman and FT-IR spectroscopies. The entire pathway of the nitrosylation process, Fe( ii ) → {FeNO} 7 → {FeNO} 8 → {Fe(NO) 2 } 9 , has been elucidated within the same protein scaffold based on spectroscopic characterization and DFT calculations. These results not only enhance the understanding of the dinitrosyl iron complex formation process, but also shed light on the physiological roles of nitric oxide signaling mediated by nonheme iron proteins. 
    more » « less