Abstract Flavodiiron NO reductases (FNORs) are important enzymes in microbial pathogenesis, as they equip microbes with resistance to the human immune defense agent nitric oxide (NO). Despite many efforts, intermediates that would provide insight into how the non‐heme diiron active sites of FNORs reduce NO to N2O could not be identified. Computations predict that iron‐hyponitrite complexes are the key species, leading from NO to N2O. However, the coordination chemistry of non‐heme iron centers with hyponitrite is largely unknown. In this study, we report the reactivity of two non‐heme iron complexes with preformed hyponitrite. In the case of [Fe(TPA)(CH3CN)2](OTf)2, cleavage of hyponitrite and formation of an Fe2(NO)2diamond core is observed. With less Lewis‐acidic [Fe2(BMPA‐PhO)2(OTf)2] (2), reaction with Na2N2O2in polar aprotic solvent leads to the formation of a red complex,3. X‐ray crystallography shows that3is a tetranuclear iron‐hyponitrite complex, [{Fe2(BMPA‐PhO)2}2(μ‐N2O2)](OTf)2, with a unique hyponitrite binding mode. This species provided the unique opportunity to us to study the interaction of hyponitrite with non‐heme iron centers and the reactivity of the bound hyponitrite ligand. Here, either protonation or oxidation of3is found to induce N2O formation, supporting the hypothesis that hyponitrite is a viable intermediate in NO reduction.
more »
« less
Stepwise nitrosylation of the nonheme iron site in an engineered azurin and a molecular basis for nitric oxide signaling mediated by nonheme iron proteins
Mononitrosyl and dinitrosyl iron species, such as {FeNO} 7 , {FeNO} 8 and {Fe(NO) 2 } 9 , have been proposed to play pivotal roles in the nitrosylation processes of nonheme iron centers in biological systems. Despite their importance, it has been difficult to capture and characterize them in the same scaffold of either native enzymes or their synthetic analogs due to the distinct structural requirements of the three species, using redox reagents compatible with biomolecules under physiological conditions. Here, we report the realization of stepwise nitrosylation of a mononuclear nonheme iron site in an engineered azurin under such conditions. Through tuning the number of nitric oxide equivalents and reaction time, controlled formation of {FeNO} 7 and {Fe(NO) 2 } 9 species was achieved, and the elusive {FeNO} 8 species was inferred by EPR spectroscopy and observed by Mössbauer spectroscopy, with complemental evidence for the conversion of {FeNO} 7 to {Fe(NO) 2 } 9 species by UV-Vis, resonance Raman and FT-IR spectroscopies. The entire pathway of the nitrosylation process, Fe( ii ) → {FeNO} 7 → {FeNO} 8 → {Fe(NO) 2 } 9 , has been elucidated within the same protein scaffold based on spectroscopic characterization and DFT calculations. These results not only enhance the understanding of the dinitrosyl iron complex formation process, but also shed light on the physiological roles of nitric oxide signaling mediated by nonheme iron proteins.
more »
« less
- PAR ID:
- 10230785
- Date Published:
- Journal Name:
- Chemical Science
- Volume:
- 12
- Issue:
- 19
- ISSN:
- 2041-6520
- Page Range / eLocation ID:
- 6569 to 6579
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract A new nonheme iron(II) complex, FeII(Me3TACN)((OSiPh2)2O) (1), is reported. Reaction of1with NO(g)gives a stable mononitrosyl complex Fe(NO)(Me3TACN)((OSiPh2)2O) (2), which was characterized by Mössbauer (δ=0.52 mm s−1, |ΔEQ|=0.80 mm s−1), EPR (S=3/2), resonance Raman (RR) and Fe K‐edge X‐ray absorption spectroscopies. The data show that2is an {FeNO}7complex with anS=3/2 spin ground state. The RR spectrum (λexc=458 nm) of2combined with isotopic labeling (15N,18O) reveals ν(N‐O)=1680 cm−1, which is highly activated, and is a nearly identical match to that seen for the reactive mononitrosyl intermediate in the nonheme iron enzyme FDPnor (ν(NO)=1681 cm−1). Complex2reacts rapidly with H2O in THF to produce the N‐N coupled product N2O, providing the first example of a mononuclear nonheme iron complex that is capable of converting NO to N2O in the absence of an exogenous reductant.more » « less
-
Abstract S/N crosstalk species derived from the interconnected reactivity of H2S and NO facilitate the transport of reactive sulfur and nitrogen species in signaling, transport, and regulatory processes. We report here that simple Fe2+ions, such as those that are bioavailable in the labile iron pool (LIP), react with thionitrite (SNO−) and perthionitrite (SSNO−) to yield the dinitrosyl iron complex [Fe(NO)2(S5)]−. In the reaction of FeCl2with SNO−we were able to isolate the unstable intermediate hydrosulfido mononitrosyl iron complex [FeCl2(NO)(SH)]−, which was characterized by X‐ray crystallography. We also show that [Fe(NO)2(S5)]−is a simple synthon for nitrosylated Fe−S clusters via its reduction with PPh3to yield Roussin's Red Salt ([Fe2S2(NO)4]2−), which highlights the role of S/N crosstalk species in the assembly of fundamental Fe−S motifs.more » « less
-
Pimchai Chaiyen (Ed.)Here, the choice of the first coordination shell of the metal center is analyzed from the perspective of charge maintenance in a binary enzyme–substrate complex and an O2-bound ternary complex in the nonheme iron oxygenases. Comparing homogentisate 1,2-dioxygenase and gentisate dioxygenase highlights the significance of charge maintenance after substrate binding as an important factor that drives the reaction coordinate. We then extend the charge analysis to several common types of nonheme iron oxygenases containing either a 2-His-1-carboxylate facial triad or a 3-His or 4-His ligand motif, including extradiol and intradiol ring-cleavage dioxygenases, thiol dioxygenases, α-ketoglutarate-dependent oxygenases, and carotenoid cleavage oxygenases. After forming the productive enzyme–substrate complex, the overall charge of the iron complex at the 0, +1, or +2 state is maintained in the remaining catalytic steps. Hence, maintaining a constant charge is crucial to promote the reaction of the iron center beginning from the formation of the Michaelis or ternary complex. The charge compensation to the iron ion is tuned not only by protein-derived carboxylate ligands but also by substrates. Overall, these analyses indicate that charge maintenance at the iron center is significant when all the necessary components form a productive complex. This charge maintenance concept may apply to most oxygen-activating metalloenzymes systems that do not draw electrons and protons step-by-step from a separate reactant, such as NADH, via a reductase. The charge maintenance perception may also be useful in proposing catalytic pathways or designing prototypical reactions using artificial or engineered enzymes for biotechnological applications.more » « less
-
Nitric oxide (NO) is an important molecule that regulates many physiological processes in humans and plants and contributes to the formation of greenhouse gases. Bacterial NO reductases utilize a di-Fe heme/nonheme active site to couple two NOs to generate nitrous oxide (N2O) via a two-electron mechanism. Here, we report a previously unexplored Cr porphyrin NO complex with a Lewis acid (LA) BF3 for the NO reduction reaction. Density functional theory calculations were first employed to reveal its reaction mechanism with a reasonable barrier for experimental realization. Subsequent experimental synthesis work confirms this reactivity and reports the first nitrosyl Cr porphyrin X-ray crystal structure. Theoretical analysis uncovered a distinctive reaction feature for the Cr system compared to Fe and Co porphyrins: the electron transfer from the metal to the bound NO occurs before LA binding. A comparative study of the NO coupling mechanisms with the three representative metals suggests that the metal reduction potential should be finely tuned, as found in previous studies of NOR enzymatic systems. Overall, this study offers new theoretical and experimental insights to further facilitate the development of alternative NO reduction compounds with biological, environmental, and industrial applications.more » « less