skip to main content

Title: Stepwise nitrosylation of the nonheme iron site in an engineered azurin and a molecular basis for nitric oxide signaling mediated by nonheme iron proteins
Mononitrosyl and dinitrosyl iron species, such as {FeNO} 7 , {FeNO} 8 and {Fe(NO) 2 } 9 , have been proposed to play pivotal roles in the nitrosylation processes of nonheme iron centers in biological systems. Despite their importance, it has been difficult to capture and characterize them in the same scaffold of either native enzymes or their synthetic analogs due to the distinct structural requirements of the three species, using redox reagents compatible with biomolecules under physiological conditions. Here, we report the realization of stepwise nitrosylation of a mononuclear nonheme iron site in an engineered azurin under such conditions. Through tuning the number of nitric oxide equivalents and reaction time, controlled formation of {FeNO} 7 and {Fe(NO) 2 } 9 species was achieved, and the elusive {FeNO} 8 species was inferred by EPR spectroscopy and observed by Mössbauer spectroscopy, with complemental evidence for the conversion of {FeNO} 7 to {Fe(NO) 2 } 9 species by UV-Vis, resonance Raman and FT-IR spectroscopies. The entire pathway of the nitrosylation process, Fe( ii ) → {FeNO} 7 → {FeNO} 8 → {Fe(NO) 2 } 9 , has been elucidated within the same protein scaffold based on spectroscopic characterization and DFT calculations. These more » results not only enhance the understanding of the dinitrosyl iron complex formation process, but also shed light on the physiological roles of nitric oxide signaling mediated by nonheme iron proteins. « less
; ; ; ; ; ; ; ; ; ; ; ;
Award ID(s):
1654060 1710241
Publication Date:
Journal Name:
Chemical Science
Page Range or eLocation-ID:
6569 to 6579
Sponsoring Org:
National Science Foundation
More Like this
  1. The activation of O 2 at thiolate–ligated iron( ii ) sites is essential to the function of numerous metalloenzymes and synthetic catalysts. Iron–thiolate bonds in the active sites of nonheme iron enzymes arise from either coordination of an endogenous cysteinate residue or binding of a deprotonated thiol-containing substrate. Examples of the latter include sulfoxide synthases, such as EgtB and OvoA, that utilize O 2 to catalyze tandem S–C bond formation and S -oxygenation steps in thiohistidine biosyntheses. We recently reported the preparation of two mononuclear nonheme iron–thiolate complexes (1 and 2) that serve as structural active-site models of substrate-bound EgtB and OvoA ( Dalton Trans. 2020, 49 , 17745–17757). These models feature monodentate thiolate ligands and tripodal N 4 ligands with mixed pyridyl/imidazolyl donors. Here, we describe the reactivity of 1 and 2 with O 2 at low temperatures to give metastable intermediates (3 and 4, respectively). Characterization with multiple spectroscopic techniques (UV-vis absorption, NMR, variable-field and -temperature Mössbauer, and resonance Raman) revealed that these intermediates are thiolate-ligated iron( iii ) dimers with a bridging oxo ligand derived from the four-electron reduction of O 2 . Structural models of 3 and 4 consistent with the experimental data were generated viamore »density functional theory (DFT) calculations. The combined experimental and computational results illuminate the geometric and electronic origins of the unique spectral features of diiron( iii )-μ-oxo complexes with thiolate ligands, and the spectroscopic signatures of 3 and 4 are compared to those of closely-related diiron( iii )-μ-peroxo species. Collectively, these results will assist in the identification of intermediates that appear on the O 2 reaction landscapes of iron–thiolate species in both biological and synthetic environments.« less
  2. Over the two decades, amorphous oxide semiconductors (AOSs) and their thin film transistor (TFT) channel application have been intensely explored to realize high performance, transparent and flexible displays due to their high field effect mobility (μFE=5-20 cm2/Vs), visible range optical transparency, and low temperature processability (25-300 °C).[1-2] The metastable amorphous phase is to be maintained during operation by the addition of Zn and additional third cation species (e.g., Ga, Hf, or Al) as an amorphous phase stabilizer.[3-5] To limit TFT off-state currents, a thin channel layer (10-20 nm) was employed for InZnO (IZO)-based TFTs, or third cations were added to suppress carrier generations in the TFT channel. To resolve bias stress-induced instabilities in TFT performance, approaches to employ defect passivation layers or enhance channel/dielectric interfacial compatibility were demonstrated.[6-7] Metallization contact is also a dominating factor that determines the performance of TFTs. Particularly, it has been reported that high electrical contact resistance significantly sacrifices drain bias applied to the channel, which leads to undesirable power loss during TFT operation and issues for the measurement of TFT field effect mobilities. [2, 8] However, only a few reports that suggest strategies to enhance contact behaviors are available in the literature. Furthermore, the previousmore »approaches (1) require an additional fabrication complexity due to the use of additional treatments at relatively harsh conditions such as UV, plasma, or high temperatures, and (2) may lead to adverse effects on the channel material attributed to the chemical incompatibility between dissimilar materials, and exposures to harsh environments. Therefore, a simple and easy but effective buffer strategy, which does not require any additional process complexities and not sacrifice chemical compatibility, needs to be established to mitigate the contact issues and therefore achieve high performance and low power consumption AOS TFTs. The present study aims to demonstrate an approach utilizing an interfacial buffer layer, which is compositionally homogeneous to the channel to better align work functions between channel and metallization without a significant fabrication complexity and harsh treatment conditions. Photoelectron spectroscopic measurements reveal that the conducting IZO buffer, of which the work function (Φ) is 4.37 eV, relaxes a relatively large Φ difference between channel IZO (Φ=4.81 eV) and Ti (Φ=4.2-4.3 eV) metallization. The buffer is found to lower the energy barrier for charge carriers at the source to reach the effective channel region near the dielectric. In addition, the higher carrier density of the buffer and favorable chemical compatibility with the channel (compositionally the same) further contribute to a significant reduction in specific contact resistance as much as more than 2.5 orders of magnitude. The improved contact and carrier supply performance from the source to the channel lead to an enhanced field effect mobility of up to 56.49 cm2/Vs and a threshold voltage of 1.18 V, compared to 13.41 cm2/Vs and 7.44 V of IZO TFTs without a buffer. The present work is unique in that an approach to lower the potential barrier between the source and the effective channel region (located near the channel/dielectric interface, behaving similar to a buried-channel MOSFET [9]) by introducing a contact buffer layer that enhances the field effect mobility and facilitates carrier supply from the source to the effective channel region.« less
  3. Nitric oxide (NO) is a key signaling molecule that regulates diverse biological processes in both animals and plants. In animals, NO regulates vascular wall tone, neurotransmission and immune response while in plants, NO is essential for development and responses to biotic and abiotic stresses [1–3]. Interestingly, NO is involved in the sexual reproduction of both animals and plants mediating physiological events related to the male gamete [2, 4]. In animals, NO stimulates sperm motility [4] and binding to the plasma membrane of oocytes [5] while in plants, NO mediates pollen-stigma interactions and pollen tube guidance [6, 7]. NO generation in pollen tubes (PTs) has been demonstrated [8] and intracellular responses to NO include cytosolic Ca2+ elevation, actin organization, vesicle trafficking and cell wall deposition [7, 9]. However, the NO-responsive proteins that mediate these responses are still elusive. Here we show that PTs of Arabidopsis lacking the pollen-specific Diacylglycerol Kinase 4 (DGK4) grow slower and become insensitive to NO-dependent growth inhibition and re-orientation responses. Recombinant DGK4 protein yields NO-responsive spectral and catalytic changes in vitro which are compatible with a role in NO perception and signaling in PTs. NO is a fast, diffusible gas and, based on our results, we hypothesizemore »it could serve in long range signaling and/or rapid cell-cell communication functions mediated by DGK4 downstream signaling during the progamic phase of angiosperm reproduction.« less
  4. Ferritin is a protein that regulates the iron ions in humans by storing them in the form of iron oxides. Despite extensive efforts to understand the ferritin iron oxide structures, it is still not clear how ferritin proteins with a distinct light (L) and heavy (H) chain subunit ratio impact the biomineralization process. In situ graphene liquid cell-transmission electron microscopy (GLC-TEM) provides an indispensable platform to study the atomic structure of ferritin mineral cores in their native liquid environment. In this study, we report differences in the iron oxide formation in human spleen ferritins (HSFs) and human heart ferritins (HHFs) using in situ GLC-TEM. Scanning transmission electron microscopy (STEM) along with selected area electron diffraction (SAED) of the mineral core and electron energy loss spectroscopy (EELS) analyses enabled the visualization of morphologies, crystal structures and the chemistry of iron oxide cores in HSFs and HHFs. Our study revealed the presence of metastable ferrihydrite (5Fe 2 O 3 ·9H 2 O) as a dominant phase in hydrated HSFs and HHFs, while a stable hematite (α-Fe 2 O 3 ) phase predominated in non-hydrated HSFs and HHFs. In addition, a higher Fe 3+ /Fe 2+ ratio was found in HHFs in comparisonmore »with HSFs. This study provides new understanding on iron-oxide phases that exist in hydrated ferritin proteins from different human organs. Such new insights are needed to map ferritin biomineralization pathways and possible correlations with various iron-related disorders in humans.« less
  5. Pimchai Chaiyen (Ed.)
    Here, the choice of the first coordination shell of the metal center is analyzed from the perspective of charge maintenance in a binary enzyme–substrate complex and an O2-bound ternary complex in the nonheme iron oxygenases. Comparing homogentisate 1,2-dioxygenase and gentisate dioxygenase highlights the significance of charge maintenance after substrate binding as an important factor that drives the reaction coordinate. We then extend the charge analysis to several common types of nonheme iron oxygenases containing either a 2-His-1-carboxylate facial triad or a 3-His or 4-His ligand motif, including extradiol and intradiol ring-cleavage dioxygenases, thiol dioxygenases, α-ketoglutarate-dependent oxygenases, and carotenoid cleavage oxygenases. After forming the productive enzyme–substrate complex, the overall charge of the iron complex at the 0, +1, or +2 state is maintained in the remaining catalytic steps. Hence, maintaining a constant charge is crucial to promote the reaction of the iron center beginning from the formation of the Michaelis or ternary complex. The charge compensation to the iron ion is tuned not only by protein-derived carboxylate ligands but also by substrates. Overall, these analyses indicate that charge maintenance at the iron center is significant when all the necessary components form a productive complex. This charge maintenance concept may apply tomore »most oxygen-activating metalloenzymes systems that do not draw electrons and protons step-by-step from a separate reactant, such as NADH, via a reductase. The charge maintenance perception may also be useful in proposing catalytic pathways or designing prototypical reactions using artificial or engineered enzymes for biotechnological applications.« less