skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: LEAP-2017 Simulation Exercise: Overview of Guidelines for the Element Test Simulations
This paper summarizes the guidelines provided to the numerical simulation/prediction teams that participated in the LEAP-2017 prediction exercise. These guidelines are developed for the Phase 1 of the simulations that focused on the use of cyclic triaxial element tests for calibration of constitutive models that the participating teams used in their numerical simulations/predictions.  more » « less
Award ID(s):
1635524 1635307
PAR ID:
10166187
Author(s) / Creator(s):
Date Published:
Journal Name:
Proceedings of LEAP-UCD-2017
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This project documents an extensive series of laboratory tests performed at the George Washington University to characterize the basic properties and stress-strain-strength response of Ottawa F-65 sand in cyclic loading conditions. The results of these experiments as well the monotonic and cyclic triaxial tests conducted in LEAP-2015 project were provided to all the numerical simulation teams who participated in the LEAP-2017 prediction exercise. The simulation teams used these results to calibrate the constitutive models that they planned to use in numerical simulations of LEAP-2017 centrifuge tests. 
    more » « less
  2. This paper presents a summary of the element test simulations (calibration simulations) submitted by 11 numerical simulation (prediction) teams that participated in the LEAP-2017 prediction exercise. A significant number of monotonic and cyclic triaxial (Vasko, An investigation into the behavior of Ottawa sand through monotonic and cyclic shear tests. Masters Thesis, The George Washington University, 2015; Vasko et al., LEAP-GWU-2015 Laboratory Tests. DesignSafe-CI, Dataset, 2018; El Ghoraiby et al., LEAP 2017: Soil characterization and element tests for Ottawa F65 sand. The George Washington University, Washington, DC, 2017; El Ghoraiby et al., LEAP-2017 GWU Laboratory Tests. DesignSafe-CI, Dataset, 2018; El Ghoraiby et al., Physical and mechanical properties of Ottawa F65 Sand. In B. Kutter et al. (Eds.), Model tests and numerical simulations of liquefaction and lateral spreading: LEAP-UCD-2017. New York: Springer, 2019) and direct simple shear tests (Bastidas, Ottawa F-65 Sand Characterization. PhD Dissertation, University of California, Davis, 2016) are available for Ottawa F-65 sand. The focus of this element test simulation exercise is to assess the performance of the constitutive models used by participating team in simulating the results of undrained stress-controlled cyclic triaxial tests on Ottawa F-65 sand for three different void ratios (El Ghoraiby et al., LEAP 2017: Soil characterization and element tests for Ottawa F65 sand. The George Washington University, Washington, DC, 2017; El Ghoraiby et al., LEAP-2017 GWU Laboratory Tests. DesignSafe-CI, Dataset, 2018; El Ghoraiby et al., Physical and mechanical properties of Ottawa F65 Sand. In B. Kutter et al. (Eds.), Model tests and numerical simulations of liquefaction and lateral spreading: LEAP-UCD-2017. New York: Springer, 2019). The simulated stress paths, stress-strain responses, and liquefaction strength curves show that majority of the models used in this exercise are able to provide a reasonably good match to liquefaction strength curves for the highest void ratio (0.585) but the differences between the simulations and experiments become larger for the lower void ratios (0.542 and 0.515). 
    more » « less
  3. Abstract Many management and conservation contexts can benefit from understanding relationships between species abundances, which can be used to improve predictions of species occurrence and abundance.We present conditional prediction as a tool to capture information about species abundances via residual covariance between species. From a fitted joint species distribution model, this framework produces a species coefficient matrix that contains relationships between species abundances. The species coefficients allow co‐observed species to be treated as a second set of predictors supplementing covariates in the model to improve prediction. We use simulations to demonstrate the potential benefits and limitations of conditional prediction across data types and species covariance before applying conditional prediction to two management contexts with real data.Simulations demonstrate that conditional prediction provides the largest benefits to continuous data and when there is residual covariance between many species.In our first application, we show that conditioning on other species improves in‐sample and out‐of‐sample predictions of fish and invertebrate species, including Atlantic cod. In our second application, we show that the species coefficient matrix can be used to identify bird species at risk of nest parasitism by Brown‐headed Cowbirds.Synthesis and applications. We present guidelines for using conditional prediction, which can help understand relationships between species abundances, improve predictions and inform conservation in a variety of contexts. 
    more » « less
  4. This investigation explores novel two‐phase chevron mechanical metamaterials that exhibit auxetic properties. Unlike traditional foam‐like cellular or porous auxetic materials, these designs are composed of chevron patterned layers embedded in anisotropic matrix. This innovation design allows for auxeticity in two orthogonal in‐plane directions (bi‐auxeticity) or in all in‐plane directions (complete auxeticity), providing not only a general strategy but also detailed guidelines for designing non‐porous auxetic mechanical metamaterials with tunable auxetic behaviors. One goal of this work is to explore the mechanical behavior, specifically effective stiffness and Poisson's ratio, of these new designs and to identify the design space for auxetic behavior using numerical and experimental methods. Systematic finite element (FE) simulations are conducted using ABAQUS and Python scripts to quantify effective stiffness and Poisson's ratio within a small strain range. To validate the numerical predictions, three representative designs are selected and fabricated via multi‐material polymer jetting. Uniaxial tension experiments are conducted on these specimens. Design spaces for non‐auxeticity, partial‐auxeticity, and complete auxeticity are identified through an integrated numerical approach. Theoretical criteria for determining the completeness of auxeticity are proposed and verified via FE simulations. 
    more » « less
  5. Abstract Understanding team diversity has become essential for modern-day organisations. This study explores the impact of knowledge diversity in design teams through computational simulations. By analysing design space characteristics, we study how diverse teams perform compared to less diverse counterparts. Results reveal that highly diverse teams exhibit increased efficiency, quicker convergence, and larger but sparser design spaces. This work contributes to understanding the impact of knowledge diversity in design teams and sets the stage for future systematic studies of diversity. 
    more » « less