skip to main content


Title: Forcing single-chain nanoparticle collapse through hydrophobic solvent interactions in comb copolymers
We introduce a novel synthetic strategy in which high molecular weight comb copolymers with aliphatic side chains can collapse into single-chain nanoparticles (SNCPs) via photodimerization of anthracene under ultraviolet (UV) irradiation. By deliberately selecting hydrophobic comonomers with disparate solvency, we demonstrated that we could control chain collapse. We attribute these results to the formation of pseudo-unimicellar structures, whereby polyisobutylene (PIB) side chains are preferentially solvated, thereby compressing anthracene moieties to form a denser crosslinked core. The control of hydrophobic interactions is a common occurrence in proteins and we believe that our approach can be further extended to achieve multi-compartment SCNPs whereby each section is responsible for a given function.  more » « less
Award ID(s):
1757220
NSF-PAR ID:
10166243
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Polymer Chemistry
Volume:
11
Issue:
2
ISSN:
1759-9954
Page Range / eLocation ID:
292 to 297
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Much attention is being paid to conformational biases in the ensembles of intrinsically disordered proteins. However, it is currently unknown whether or how conformational biases within the disordered ensembles of foldable proteins affect function in vivo. Recently, we demonstrated that water can be a good solvent for unfolded polypeptide chains, even those with a hydrophobic and charged sequence composition typical of folded proteins. These results run counter to the generally accepted model that protein folding begins with hydrophobicity-driven chain collapse. Here we investigate what other features, beyond amino acid composition, govern chain collapse. We found that local clustering of hydrophobic and/or charged residues leads to significant collapse of the unfolded ensemble of pertactin, a secreted autotransporter virulence protein fromBordetella pertussis, as measured by small angle X-ray scattering (SAXS). Sequence patterns that lead to collapse also correlate with increased intermolecular polypeptide chain association and aggregation. Crucially, sequence patterns that support an expanded conformational ensemble enhance pertactin secretion to the bacterial cell surface. Similar sequence pattern features are enriched across the large and diverse family of autotransporter virulence proteins, suggesting sequence patterns that favor an expanded conformational ensemble are under selection for efficient autotransporter protein secretion, a necessary prerequisite for virulence. More broadly, we found that sequence patterns that lead to more expanded conformational ensembles are enriched across water-soluble proteins in general, suggesting protein sequences are under selection to regulate collapse and minimize protein aggregation, in addition to their roles in stabilizing folded protein structures.

     
    more » « less
  2. Herein we report the synthesis of ternary statistical methacrylate copolymers comprising cationic ammonium (amino-ethyl methacrylate: AEMA), carboxylic acid (propanoic acid methacrylate: PAMA) and hydrophobic (ethyl methacrylate: EMA) side chain monomers, to study the functional role of anionic groups on their antimicrobial and hemolytic activities as well as the conformation of polymer chains. The hydrophobic monomer EMA was maintained at 40 mol% in all the polymers, with different percentages of cationic ammonium (AEMA) and anionic carboxylate (PAMA) side chains, resulting in different total net charge for the polymers. The antimicrobial and hemolytic activities of the copolymer were determined by the net charge of +3 or larger, suggesting that there was no distinct effect of the anionic carboxylate groups on the antimicrobial and hemolytic activities of the copolymers. However, the pH titration and atomic molecular dynamics simulations suggest that anionic groups may play a strong role in controlling the polymer conformation. This was achieved via formation of salt bridges between cationic and anionic groups, transiently crosslinking the polymer chain allowing dynamic switching between compact and extended conformations. These results suggest that inclusion of functional groups in general, other than the canonical hydrophobic and cationic groups in antimicrobial agents, may have broader implications in acquiring functional structures required for adequate antimicrobial activity. In order to explain the implications, we propose a molecular model in which formation of intra-chain, transient salt bridges, due to the presence of both anionic and cationic groups along the polymer, may function as “adhesives” which facilitate compact packing of the polymer chain to enable functional group interaction but without rigidly locking down the overall polymer structure, which may adversely affect their functional roles. 
    more » « less
  3. ABSTRACT

    The properties of phosphonium polyelectrolytes (PELs) were evaluated in an effort to assess the influence of both side chain and main chain composition. The influence of side chain was examined by comparing properties of a series of PELs having hydrophobic octyloxy side chains to those of structural analogues lacking the side chains. The influence exerted by backbone flexibility/length of spacer between charges was revealed by comparing properties of two series of polymers with a variable number of methylene units between phosphonium charge‐bearing sites. Side chain composition and spacing between phosphonium units lead to noteworthy influence on thermal stability, glass transition, and crystallinity. The molecular structure of PELs also correlates with trends in film morphology and critical surface energy of PEL dip‐cast films. Sensitivity of morphology to humidity or water in the casting solvent was observed. Supramolecular assembly of films via layer‐by‐layer deposition of PELs alternating with anionic polythiophene derivative layers was also undertaken. The linearity of film growth, amount of material deposited in each bilayer, polycation:polyanion ratio, and film roughness all show noteworthy trends that depend on both the presence/absence of side chains and on spacing between ionic centers. The relationship between side chain and spacer on bactericidal activity againstStaphylococcus aureusandEscherichia coliwas assessed. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem.2019, 57, 24–34

     
    more » « less
  4. Bottlebrush polymers are complex macromolecules with tunable physical properties dependent on the chemistry and architecture of both the side chains and the backbone. Prior work has demonstrated that bottlebrush polymer additives can be used to control the interfacial properties of blends with linear polymers but has not specifically addressed the effects of bottlebrush side chain microstructures. Here, using a combination of experiments and self-consistent field theory (SCFT) simulations, we investigated the effects of side chain microstructures by comparing the segregation of bottlebrush additives having random copolymer side chains with bottlebrush additives having a mixture of two different homopolymer side chain chemistries. Specifically, we synthesized bottlebrush polymers with either poly(styrene- ran -methyl methacrylate) side chains or with a mixture of polystyrene (PS) and poly(methyl methacrylate) (PMMA) side chains. The bottlebrush additives were matched in terms of PS and PMMA compositions, and they were blended with linear PS or PMMA chains that ranged in length from shorter to longer than the bottlebrush side chains. Experiments revealed similar behaviors of the two types of bottlebrushes, with a slight preference for mixed side-chain bottlebrushes at the film surface. SCFT simulations were qualitatively consistent with experimental observations, predicting only slight differences in the segregation of bottlebrush additives driven by side chain microstructures. Specifically, these slight differences were driven by the chemistries of the bottlebrush polymer joints and side chain end-groups, which were entropically repelled and attracted to interfaces, respectively. Using SCFT, we also demonstrated that the interfacial behaviors were dominated by entropic effects with high molecular weight linear polymers, leading to enrichment of bottlebrush near interfaces. Surprisingly, the SCFT simulations showed that the chemistry of the joints connecting the bottlebrush backbones and side chains played a more significant role compared with the side chain end groups in affecting differences in surface excess of bottlebrushes with random and mixed side chains. This work provides new insights into the effects of side chain microstructure on segregation of bottlebrush polymer additives. 
    more » « less
  5. null (Ed.)
    This article reports on the conformational behavior of binary heterografted three-arm star molecular bottlebrushes composed of poly(ethylene oxide) (PEO) and either poly(2-( N , N -dimethylamino)ethyl methacrylate) (PDMAEMA, the brushes denoted as SMB-1) or poly(2-( N , N -diethylamino)ethyl methacrylate) (PDEAEMA, the brushes denoted as SMB-2) side chains in aqueous solutions in response to pH changes and addition of salts containing chaotropic anions (CAs). PEO was introduced into the brushes as a stabilizer when the tertiary amine-containing side chains collapsed. While a small size decrease of SMB-1 was observed with increasing pH from acidic to basic, SMB-2 exhibited a large and abrupt size transition caused by the pH-induced solubility change of PDEAEMA. Atomic force microscopy imaging revealed a star-to-globule shape transition of SMB-2 upon increasing pH across the p K a ; in contrast, SMB-1 stayed in the starlike state at both low and high pH values. Intriguingly, both SMB-1 and -2 displayed star-to-globule shape transitions in acidic solutions upon addition of salts containing sufficiently strong CAs such as ClO 4 − , with SMB-2 showing a greater sensitivity to moderate CAs than SMB-1. Moreover, superchaotropic anions ( e.g. , Fe(CN) 6 3− and S 2 O 8 2− ) were significantly more efficient in inducing shape changing than common CAs. The CA-induced shape transitions resulted from the ion pairing of CAs and protonated tertiary amine groups and the high propensity of CAs to associate with hydrophobic moieties in the brushes, which decreased the solubility of the tertiary amine-containing side chains and caused the brushes to collapse. The findings reported here may enable potential applications of molecular bottlebrushes in, e.g. , encapsulation and release of ionic substances. 
    more » « less