skip to main content


Title: Star–Gas Surface Density Correlations in 12 Nearby Molecular Clouds. I. Data Collection and Star-sampled Analysis
Award ID(s):
1748571
PAR ID:
10166286
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
896
Issue:
1
ISSN:
1538-4357
Page Range / eLocation ID:
60
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We review the current knowledge about nuclear star clusters (NSCs), the spectacularly dense and massive assemblies of stars found at the centers of most galaxies. Recent observational and theoretical works suggest that many NSC properties, including their masses, densities, and stellar populations, vary with the properties of their host galaxies. Understanding the formation, growth, and ultimate fate of NSCs, therefore, is crucial for a complete picture of galaxy evolution. Throughout the review, we attempt to combine and distill the available evidence into a coherent picture of NSC evolution. Combined, this evidence points to a clear transition mass in galaxies of $$\sim 10^9\,M_\odot$$ ∼ 10 9 M ⊙ where the characteristics of nuclear star clusters change. We argue that at lower masses, NSCs are formed primarily from globular clusters that inspiral into the center of the galaxy, while at higher masses, star formation within the nucleus forms the bulk of the NSC. We also discuss the co-existence of NSCs and central black holes, and how their growth may be linked. The extreme densities of NSCs and their interaction with massive black holes lead to a wide range of unique phenomena including tidal disruption and gravitational-wave events. Finally, we review the evidence that many NSCs end up in the halos of massive galaxies stripped of the stars that surrounded them, thus providing valuable tracers of the galaxies’ accretion histories. 
    more » « less
  2. Abstract

    We report the first star formation history study of the Milky Ways nuclear star cluster (NSC), which includes observational constraints from a large sample of stellar metallicity measurements. These metallicity measurements were obtained from recent surveys from Gemini and the Very Large Telescope of 770 late-type stars within the central 1.5 pc. These metallicity measurements, along with photometry and spectroscopically derived temperatures, are forward modeled with a Bayesian inference approach. Including metallicity measurements improves the overall fit quality, as the low-temperature red giants that were previously difficult to constrain are now accounted for, and the best fit favors a two-component model. The dominant component contains 93% ± 3% of the mass, is metal-rich ([M/H]¯0.45), and has an age of52+3Gyr, which is ∼3 Gyr younger than earlier studies with fixed (solar) metallicity; this younger age challenges coevolutionary models in which the NSC and supermassive black holes formed simultaneously at early times. The minor population component has low metallicity ([M/H]¯1.1) and contains ∼7% of the stellar mass. The age of the minor component is uncertain (0.1–5 Gyr old). Using the estimated parameters, we infer the following NSC stellar remnant population (with ∼18% uncertainty): 1.5 × 105neutron stars, 2.5 × 105stellar-mass black holes (BHs), and 2.2 × 104BH–BH binaries. These predictions result in 2–4 times fewer neutron stars compared to earlier predictions that assume solar metallicity, introducing a possible new path to understand the so-called “missing-pulsar problem”. Finally, we present updated predictions for the BH–BH merger rates (0.01–3 Gpc−3yr−1).

     
    more » « less
  3. Abstract

    The precise measurement of neutron star (NS) spins can provide important insight into the formation and evolution of compact binaries containing NSs. While traditional methods of NS spin measurement rely on pulsar observations, gravitational-wave detections offer a complementary avenue. However, determining component spins with gravitational waves is hindered by the small dimensionless spins of the NSs and the degeneracy in the mass and spin parameters. This degeneracy can be addressed by the inclusion of higher-order modes in the waveform, which are important for systems with unequal masses. This study shows the suitability of NS–black hole mergers, which are naturally mass-asymmetric, for precise NS spin measurements. We explore the effects of the black hole masses and spins, higher-mode content, inclination angles, and detector sensitivity on the measurement of NS spin. We find that networks with next-generation observatories like the Cosmic Explorer and the Einstein Telescope can distinguish NS dimensionless spin of 0.04 (0.1) from zero at 1σconfidence for events within ∼350 (∼1000) Mpc. Networks with A+ and Adetectors achieve similar distinction within ∼30 (∼70) Mpc and ∼50 (∼110) Mpc, respectively.

     
    more » « less