skip to main content


Title: Seeding the second star – II. CEMP star formation enriched from faint supernovae
ABSTRACT Carbon-enhanced metal-poor (CEMP) stars are the living fossils holding records of chemical enrichment from early generations of stars. In this work, we perform a set of numerical simulations of the enrichment from a supernova (SN) of a first generation of metal-free (Pop III) star and the gravitational collapse of the enriched cloud, considering all relevant cooling/heating processes and chemical reactions as well as the growth of dust grains. We adopt faint SN models for the first time with progenitor masses MPopIII = 13–$80 \ {\rm M_{\bigodot }}$, which yield C-enhanced abundance patterns ([C/Fe] = 4.57–4.75) through mixing and fallback of innermost layers of the ejecta. This model also considers the formation and destruction of dust grains. We find that the metals ejected by the SN can be partly re-accreted by the same dark matter minihalo, and carbon abundance of the enriched cloud A(C) = 3.80–5.06 is lower than the abundance range of observed CEMP stars (A(C) ≳ 6) because the mass of the metals ejected by faint SNe is smaller than normal core-collapse SNe due to extensive fallback. We also find that cloud fragmentation is induced by gas cooling from carbonaceous grains for $M_{\rm Pop III}= 13 \ {\rm M_{\bigodot }}$ even with the lowest iron abundance [Fe/H] ∼ −9. This leads to the formation of low-mass stars, and these ‘giga metal-poor’ stars can survive until the present-day Universe and may be found by future observations.  more » « less
Award ID(s):
1828187
NSF-PAR ID:
10202125
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
497
Issue:
3
ISSN:
0035-8711
Page Range / eLocation ID:
3149 to 3165
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    ABSTRACT Carbon enhanced metal poor (CEMP)-no stars, a subset of CEMP stars ($\rm [C/Fe]\ge 0.7$ and $\rm [Fe/H]\lesssim -1$) have been discovered in ultra-faint dwarf (UFD) galaxies, with $M_{\rm vir}\approx 10^8{\, \mathrm{ M}_\odot }$ and $M_{\ast }\approx 10^3-10^4{\, \mathrm{ M}_\odot }$ at z = 0, as well as in the halo of the Milky Way (MW). These CEMP-no stars are local fossils that may reflect the properties of the first (Pop III) and second (Pop II) generation of stars. However, cosmological simulations have struggled to reproduce the observed level of carbon enhancement of the known CEMP-no stars. Here, we present new cosmological hydrodynamic zoom-in simulations of isolated UFDs that achieve a gas mass resolution of $m_{\rm gas}\approx 60{\, \mathrm{ M}_\odot }$. We include enrichment from Pop III faint supernovae (SNe), with ESN = 0.6 × 1051 erg, to understand the origin of CEMP-no stars. We confirm that Pop III and Pop II stars are mainly responsible for the formation of CEMP and C-normal stars, respectively. New to this study, we find that a majority of CEMP-no stars in the observed UFDs and the MW halo can be explained by Pop III SNe with normal explosion energy (ESN = 1.2 × 1051 erg) and Pop II enrichment, but faint SNe might also be needed to produce CEMP-no stars with $\rm [C/Fe]\gtrsim 2$, corresponding to the absolute carbon abundance of $\rm A(C)\gtrsim 6.0$. Furthermore, we find that while we create CEMP-no stars with high carbon ratio $\rm [C/Fe]\approx 3-4$, by adopting faint SNe, it is still challenging to reproduce CEMP-no stars with extreme level of carbon abundance of $\rm A(C)\approx 7.0-7.5$, observed both in the MW halo and UFDs. 
    more » « less
  2. ABSTRACT We report the discovery of SMSS J160540.18−144323.1, a new ultra metal-poor halo star discovered with the SkyMapper telescope. We measure $\left[\rm {Fe}/\rm {H}\right]= -6.2 \pm 0.2$ (1D LTE), the lowest ever detected abundance of iron in a star. The star is strongly carbon-enhanced, $\left[\rm {C}/\rm {Fe}\right] = 3.9 \pm 0.2$, while other abundances are compatible with an α-enhanced solar-like pattern with $\left[\rm {Ca}/\rm {Fe}\right] = 0.4 \pm 0.2$, $\left[\rm {Mg}/\rm {Fe}\right] = 0.6 \pm 0.2$, $\left[\rm {Ti}/\rm {Fe}\right] = 0.8 \pm 0.2$, and no significant s- or r-process enrichment, $\left[\rm {Sr}/\rm {Fe}\right] \lt 0.2$ and $\left[\rm {Ba}/\rm {Fe}\right] \lt 1.0$ (3σ limits). Population III stars exploding as fallback supernovae may explain both the strong carbon enhancement and the apparent lack of enhancement of odd-Z and neutron-capture element abundances. Grids of supernova models computed for metal-free progenitor stars yield good matches for stars of about $10\, \rm M_\odot$ imparting a low kinetic energy on the supernova ejecta, while models for stars more massive than roughly $20\, \rm M_\odot$ are incompatible with the observed abundance pattern. 
    more » « less
  3. Abstract We present stellar parameters and abundances of 13 elements for 18 very metal-poor (VMP; [Fe/H] < –2.0) stars, selected as extremely metal-poor (EMP; [Fe/H] < –3.0) candidates from the Sloan Digital Sky Survey and Large sky Area Multi-Object Fiber Spectroscopic Telescope survey. High-resolution spectroscopic observations were performed using GEMINI-N/GRACES. We find 10 EMP stars among our candidates, and we newly identify three carbon-enhanced metal-poor stars with [Ba/Fe] < 0. Although chemical abundances of our VMP/EMP stars generally follow the overall trend of other Galactic halo stars, there are a few exceptions. One Na-rich star ([Na/Fe] = +1.14) with low [Mg/Fe] suggests a possible chemical connection with second-generation stars in a globular cluster. The progenitor of an extremely Na-poor star ([Na/Fe] = –1.02) with high K- and Ni-abundance ratios may have undergone a distinct nucleosynthesis episode, associated with core-collapse supernovae (SNe) having a high explosion energy. We have also found a Mg-rich star ([Mg/Fe] = +0.73) with slightly enhanced Na and extremely low [Ba/Fe], indicating that its origin is not associated with neutron-capture events. On the other hand, the origin of the lowest Mg abundance ([Mg/Fe] = –0.61) star could be explained by accretion from a dwarf galaxy, or formation in a gas cloud largely polluted by SNe Ia. We have also explored the progenitor masses of our EMP stars by comparing their chemical-abundance patterns with those predicted by Population III SNe models, and find a mass range of 10–26 M ⊙ , suggesting that such stars were primarily responsible for the chemical enrichment of the early Milky Way. 
    more » « less
  4. Abstract

    Metal-poor stars in the Milky Way (MW) halo display large star-to-star dispersion in theirr-process abundance relative to lighter elements. This suggests a chemically diverse and unmixed interstellar medium (ISM) in the early universe. This study aims to help shed light on the impact of turbulent mixing, driven by core-collapse supernovae (cc-SNe), on ther-process abundance dispersal in galactic disks. To this end, we conduct a series of simulations of small-scale galaxy patches which resolve metal-mixing mechanisms at parsec scales. Our setup includes cc-SNe feedback and enrichment fromr-process sources. We find that the relative rate of ther-process events to cc-SNe is directly imprinted on the shape of ther-process distribution in the ISM with more frequent events causing more centrally peaked distributions. We consider also the fraction of metals that is lost on galactic winds and find that cc-SNe are able to efficiently launch highly enriched winds, especially in smaller galaxy models. This result suggests that smaller systems, e.g., dwarf galaxies, may require higher levels of enrichment in order to achieve similar meanr-process abundances as MW-like progenitors systems. Finally, we are able to place novel constraints on the production rate ofr-process elements in the MW,6×107Myr1ṁrp4.7×104Myr1, imposed by accurately reproducing the mean and dispersion of [Eu/Fe] in metal-poor stars. Our results are consistent with independent estimates from alternate methods and constitute a significant reduction in the permitted parameter space.

     
    more » « less
  5. null (Ed.)
    ABSTRACT Stellar and supernova nucleosynthesis in the first few billion years of the cosmic history have set the scene for early structure formation in the Universe, while little is known about their nature. Making use of stellar physical parameters measured by GALAH Data Release 3 with accurate astrometry from the Gaia EDR3, we have selected ∼100 old main-sequence turn-off stars (ages ≳12 Gyr) with kinematics compatible with the Milky Way stellar halo population in the Solar neighbourhood. Detailed homogeneous elemental abundance estimates by GALAH DR3 are compared with supernova yield models of Pop III (zero-metal) core-collapse supernovae (CCSNe), normal (non-zero-metal) CCSNe, and Type Ia supernovae (SN Ia) to examine which of the individual yields or their combinations best reproduce the observed elemental abundance patterns for each of the old halo stars (‘OHS’). We find that the observed abundances in the OHS with [Fe/H] > −1.5 are best explained by contributions from both CCSNe and SN Ia, where the fraction of SN Ia among all the metal-enriching SNe is up to 10–20 per cent for stars with high [Mg/Fe] ratios and up to 20–27 per cent for stars with low [Mg/Fe] ratios, depending on the assumption about the relative fraction of near-Chandrasekhar-mass SNe Ia progenitors. The results suggest that, in the progenitor systems of the OHS with [Fe/H] > −1.5, ∼ 50–60 per cent of Fe mass originated from normal CCSNe at the earliest phases of the Milky Way formation. These results provide an insight into the birth environments of the oldest stars in the Galactic halo. 
    more » « less