skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Broadband chiral hybrid plasmon modes on nanofingernail substrates
There is significant interest in the utility of asymmetric nanoaperture arrays as substrates for the surface-enhanced detection, fluorescence, and imaging of individual molecules. This work introduces obliquely-cut, out-of-plane, coaxial layered structures on an aperture edge. We refer to these structures as nanofingernails, which emphasizes their curved, oblique, and out-of-plane features. Broadband coupling into chiral hybrid plasmon modes and helicity-dependent near-field scattering without circular dichroism are demonstrated. The unusually-broadband, multipolar modes of nanofingernail micropore structures exhibit phase retardation effects that may be useful for achieving spatial overlap at different frequencies. The nanofingernail geometry shows new potential for simultaneous polarization-enhanced hyperspectral imaging on apertured, plasmonic surfaces.  more » « less
Award ID(s):
1921034
PAR ID:
10166397
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Nanoscale
Volume:
12
Issue:
6
ISSN:
2040-3364
Page Range / eLocation ID:
3827 to 3833
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The stability and resonance spectra associated with a domain wall skyrmion embedded within a Néel skyrmion, forming a 1-kink skyrmion, has been studied using micromagnetic simulations. We show that the 1-kink skyrmion is stable over a wide range of fields at moderate strengths of the Dzyaloshinskii-Moriya interaction. By exciting these structures with a broadband magnetic field excitation, we find complex resonance behavior deviating from that of a pure Néel skyrmion. For out-of-plane excitations, the 1-kink skyrmion demonstrates an additional mode relative to that of the Néel skyrmion at reduced amplitude. These consist of low frequency and high frequency modes associated with both a breathing mode and an oscillation of the embedded domain wall skyrmion. Following an in-plane excitation, both Néel and 1-kink skyrmions exhibit a counterclockwise rotational mode with similar frequencies, as well as a higher frequency mode associated with the interaction of the structure with the ferromagnetic background state. These results may help pave the way for exploration of more complex spin structures for magnetic-based microwave devices. 
    more » « less
  2. Periodic networks on the verge of mechanical instability, called Maxwell lattices, are known to exhibit zero-frequency modes localized to their boundaries. Topologically polarized Maxwell lattices, in particular, focus these zero modes to one of their boundaries in a manner that is protected against disorder by the reciprocal-space topology of the lattice’s band structure. Here, we introduce a class of mechanical bilayers as a model system for designing topologically protected edge modes that couple in-plane dilational and shearing modes to out-of-plane flexural modes, a paradigm that we refer to as “omnimodal polarization.” While these structures exhibit a high-dimensional design space that makes it difficult to predict the topological polarization of generic geometries, we are able to identify a family of mirror-symmetric bilayers that inherit the in-plane modal localization of their constitutive monolayers, whose topological polarization can be determined analytically. Importantly, the coupling between the layers results in the emergence of omnimodal polarization, whereby in-plane and out-of-plane edge modes localize on the same edge. We demonstrate these theoretical results by fabricating a mirror-symmetric, topologically polarized kagome bilayer consisting of a network of elastic beams via additive manufacturing and confirm this finite-frequency polarization via finite element analysis and laser-vibrometry experiments. 
    more » « less
  3. Earth's normal modes are fundamental observations used in global seismic tomography to understand Earth structure. Land seismic station coverage is sufficient to constrain the broadest scale Earth structures. However, 70% of Earth's surface is covered by the oceans, hampering our ability to observe variations in local mode frequencies that contribute to imaging small-scale structures. Broadband ocean bottom seismometers can record spheroidal modes to fill in gaps in global data coverage. Ocean bottom recordings are contaminated by signals from complex interactions between ocean and solid Earth dynamics at normal mode frequencies. We present a method for correcting tilt on broadband ocean bottom seismometers by rotation. The correction improves the ability of some instruments to observe spheroidal modes down to 0S4. We demonstrate this method using 15 broadband ocean bottom seismometers from the PI-LAB array. We measure normal mode peak frequency shifts and compare with 1-D reference mode frequencies and predictions from 3-D global models. Our measurements agree with the 3-D models for modes between 0S14 - 0S37 with small but significant differences. These differences likely reflect real Earth structure. This suggests incorporating ocean bottom normal mode measurements into global inversions will improve models of global seismic velocity structure. 
    more » « less
  4. Porous graphene and graphite are increasingly utilized in electrochemical energy storage and solar-thermal applications due to their unique structural and thermal properties. In this study, we conduct a comprehensive analysis of the lattice thermal transport and spectral phonon characteristics of holey graphite and multilayer graphene. Our results reveal that phonon modes propagating obliquely with respect to the graphene basal planes are the primary contributors to cross-plane thermal transport. These modes exhibit a predominantly ballistic nature, resulting in an almost linear increase in cross-plane thermal conductivity with the number of layers. The presence of nanoholes in graphene induces a broadband suppression of cross-plane phonon transport, whereas lithium-ion intercalation shows potential to enhance it. These findings provide critical insights into the mechanisms governing cross-plane heat conduction in key graphene-based structures, offering valuable guidance for thermal management and engineering of van der Waals materials. 
    more » « less
  5. Abstract Hyperbolic phonon polaritons (HPhPs) are stimulated by coupling infrared (IR) photons with the polar lattice vibrations. Such HPhPs offer low‐loss, highly confined light propagation at subwavelength scales with out‐of‐plane or in‐plane hyperbolic wavefronts. For HPhPs, while a hyperbolic dispersion implies multiple propagating modes with a distribution of wavevectors at a given frequency, so far it has been challenging to experimentally launch and probe the higher‐order modes that offer stronger wavelength compression, especially for in‐plane HPhPs. In this work, the experimental observation of higher‐order in‐plane HPhP modes stimulated on a 3C‐SiC nanowire (NW)/α‐MoO3heterostructure is reported where leveraging both the low‐dimensionality and low‐loss nature of the polar NWs, higher‐order HPhPs modes within 2D α‐MoO3crystal are launched by the 1D 3C‐SiC NW. The launching mechanism is further studied and the requirements for efficiently launching of such higher‐order modes are determined. In addition, by altering the geometric orientation between the 3C‐SiC NW and α‐MoO3crystal, the manipulation of higher‐order HPhP dispersions as a method of tuning is demonstrated. This work illustrates an extremely anisotropic low dimensional heterostructure platform to confine and configure electromagnetic waves at the deep‐subwavelength scales for a range of IR applications including sensing, nano‐imaging, and on‐chip photonics. 
    more » « less