skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: AllenNLP Interpret: A Framework for Explaining Predictions of NLP Models
Neural NLP models are increasingly accurate but are imperfect and opaque—they break in counterintuitive ways and leave end users puzzled at their behavior. Model interpretation methods ameliorate this opacity by providing explanations for specific model predictions. Unfortunately, existing interpretation codebases make it difficult to apply these methods to new models and tasks, which hinders adoption for practitioners and burdens interpretability researchers. We introduce AllenNLP Interpret, a flexible framework for interpreting NLP models. The toolkit provides interpretation primitives (e.g., input gradients) for any AllenNLP model and task, a suite of built-in interpretation methods, and a library of front-end visualization components. We demonstrate the toolkit’s flexibility and utility by implementing live demos for five interpretation methods (e.g., saliency maps and adversarial attacks) on a variety of models and tasks (e.g., masked language modeling using BERT and reading comprehension using BiDAF). These demos, alongside our code and tutorials, are available at https://allennlp.org/interpret.  more » « less
Award ID(s):
1756023
PAR ID:
10166402
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Conference on Empirical Methods in Natural Language Processing (EMNLP): System Demonstrations
Page Range / eLocation ID:
7 to 12
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Song, Dongjin; Xie, Yao; Purushotham, Sanjay; Chen, Haifeng; Shen, Cong (Ed.)
    Interpreting complex time series forecasting models is challenging due to the temporal dependencies between time steps and the dynamic relevance of input features over time. Existing interpretation methods are limited by focusing mostly on classification tasks, evaluating using custom baseline models instead of the latest time series models, using simple synthetic datasets, and requiring training another model. We introduce a novel interpretation method, Windowed Temporal Saliency Rescaling (WinTSR) addressing these limitations. WinTSR explicitly captures temporal dependencies among the past time steps and efficiently scales the feature importance with this time importance. We benchmark WinTSR against 10 recent interpretation techniques with 5 state-of-the-art deep-learning models of different architectures, including a time series foundation model. We use 3 real-world datasets for both time-series classification and regression. Our comprehensive analysis shows that WinTSR significantly outranks the other local interpretation methods in overall performance. Finally, we provide a novel and open-source framework to interpret the latest time series transformers and foundation models. 
    more » « less
  2. Increasing concerns and regulations about data privacy and sparsity necessitate the study of privacy-preserving, decentralized learning methods for natural language processing (NLP) tasks. Federated learning (FL) provides promising approaches for a large number of clients (e.g., personal devices or organizations) to collaboratively learn a shared global model to benefit all clients while allowing users to keep their data locally. Despite interest in studying FL methods for NLP tasks, a systematic comparison and analysis is lacking in the literature. Herein, we present the FedNLP, a benchmarking framework for evaluating federated learning methods on four different task formulations: text classification, sequence tagging, question answering, and seq2seq. We propose a universal interface between Transformer-based language models (e.g., BERT, BART) and FL methods (e.g., FedAvg, FedOPT, etc.) under various non-IID partitioning strategies. Our extensive experiments with FedNLP provide empirical comparisons between FL methods and helps us better understand the inherent challenges of this direction. The comprehensive analysis points to intriguing and exciting future research aimed at developing FL methods for NLP tasks. 
    more » « less
  3. Abstract Text augmentation is an effective technique in alleviating overfitting in NLP tasks. In existing methods, text augmentation and downstream tasks are mostly performed separately. As a result, the augmented texts may not be optimal to train the downstream model. To address this problem, we propose a three-level optimization framework to perform text augmentation and the downstream task end-to- end. The augmentation model is trained in a way tailored to the downstream task. Our framework consists of three learning stages. A text summarization model is trained to perform data augmentation at the first stage. Each summarization example is associated with a weight to account for its domain difference with the text classification data. At the second stage, we use the model trained at the first stage to perform text augmentation and train a text classification model on the augmented texts. At the third stage, we evaluate the text classification model trained at the second stage and update weights of summarization examples by minimizing the validation loss. These three stages are performed end-to-end. We evaluate our method on several text classification datasets where the results demonstrate the effectiveness of our method. Code is available at https://github.com/Sai-Ashish/End-to-End-Text-Augmentation. 
    more » « less
  4. Large language models (LLMs) encode parametric knowledge about world facts and have shown remarkable performance in knowledge-driven NLP tasks. However, their reliance on parametric knowledge may cause them to overlook contextual cues, leading to incorrect predictions in context-sensitive NLP tasks (e.g., knowledge acquisition tasks). In this paper, we seek to assess and enhance LLMs’ contextual faithfulness in two aspects: knowledge conflict and prediction with abstention. We demonstrate that LLMs’ faithfulness can be significantly improved using carefully designed prompting strategies. In particular, we identify opinion-based prompts and counterfactual demonstrations as the most effective methods. Opinion-based prompts reframe the context as a narrator’s statement and inquire about the narrator’s opinions, while counterfactual demonstrations use instances containing false facts to improve faithfulness in knowledge conflict situations. Neither technique requires additional training. We conduct experiments on three datasets of two standard NLP tasks, machine reading comprehension and relation extraction, and the results demonstrate significant improvement in faithfulness to contexts. Code and data are released at https://github.com/wzhouad/context-faithful-llm. 
    more » « less
  5. We study algorithms for approximating pairwise similarity matrices that arise in natural language processing. Generally, computing a similarity matrix for $$n$$ data points requires $$\Omega(n^2)$$ similarity computations. This quadratic scaling is a significant bottleneck, especially when similarities are computed via expensive functions, e.g., via transformer models. Approximation methods reduce this quadratic complexity, often by using a small subset of exactly computed similarities to approximate the remainder of the complete pairwise similarity matrix. Significant work focuses on the efficient approximation of positive semidefinite (PSD) similarity matrices, which arise e.g., in kernel methods. However, much less is understood about indefinite (non-PSD) similarity matrices, which often arise in NLP. Motivated by the observation that many of these matrices are still somewhat close to PSD, we introduce a generalization of the popular \emph{Nystrom method} to the indefinite setting. Our algorithm can be applied to any similarity matrix and runs in sublinear time in the size of the matrix, producing a rank-$$s$$ approximation with just $O(ns)$ similarity computations. We show that our method, along with a simple variant of CUR decomposition, performs very well in approximating a variety of similarity matrices arising in NLP tasks. We demonstrate high accuracy of the approximated similarity matrices in tasks of document classification, sentence similarity, and cross-document coreference. 
    more » « less