skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on March 4, 2026

Title: A Windowed Temporal Saliency Rescaling Method for Interpreting Time Series Deep Learning Models
Interpreting complex time series forecasting models is challenging due to the temporal dependencies between time steps and the dynamic relevance of input features over time. Existing interpretation methods are limited by focusing mostly on classification tasks, evaluating using custom baseline models instead of the latest time series models, using simple synthetic datasets, and requiring training another model. We introduce a novel interpretation method, Windowed Temporal Saliency Rescaling (WinTSR) addressing these limitations. WinTSR explicitly captures temporal dependencies among the past time steps and efficiently scales the feature importance with this time importance. We benchmark WinTSR against 10 recent interpretation techniques with 5 state-of-the-art deep-learning models of different architectures, including a time series foundation model. We use 3 real-world datasets for both time-series classification and regression. Our comprehensive analysis shows that WinTSR significantly outranks the other local interpretation methods in overall performance. Finally, we provide a novel and open-source framework to interpret the latest time series transformers and foundation models.  more » « less
Award ID(s):
2151597
PAR ID:
10583568
Author(s) / Creator(s):
;
Corporate Creator(s):
Editor(s):
Song, Dongjin; Xie, Yao; Purushotham, Sanjay; Chen, Haifeng; Shen, Cong
Publisher / Repository:
AAAI'25 Workshop: AI for Time Series Analysis: Theory, Algorithms, and Applications (AI4TS)
Date Published:
Edition / Version:
1
Volume:
1
Issue:
1
Page Range / eLocation ID:
https://github.com/AI4TS/AI4TS.github.io/blob/main/Camera_Ready_AAAI2025/21%5CCameraReady%5CWTSR_AAAI_2025.pdf
Subject(s) / Keyword(s):
Interpreting Windowed Temporal Saliency, Deep Learning
Format(s):
Medium: X Size: 848KB Other: pdf
Size(s):
848KB
Sponsoring Org:
National Science Foundation
More Like this
  1. The widespread use of Artificial Intelligence (AI) has highlighted the importance of understanding AI model behavior. This understanding is crucial for practical decision-making, assessing model reliability, and ensuring trustworthiness. Interpreting time series forecasting models faces unique challenges compared to image and text data. These challenges arise from the temporal dependencies between time steps and the evolving importance of input features over time. My thesis focuses on addressing these challenges by aiming for more precise explanations of feature interactions, uncovering spatiotemporal patterns, and demonstrating the practical applicability of these interpretability techniques using real-world datasets and state-of-the-art deep learning models. 
    more » « less
  2. Advancing the capabilities of earthquake nowcasting, the real-time forecasting of seismic activities, remains crucial for reducing casualties. This multifaceted challenge has recently gained attention within the deep learning domain, facilitated by the availability of extensive earthquake datasets. Despite significant advancements, the existing literature on earthquake nowcasting lacks comprehensive evaluations of pre-trained foundation models and modern deep learning architectures; each focuses on a different aspect of data, such as spatial relationships, temporal patterns, and multi-scale dependencies. This paper addresses the mentioned gap by analyzing different architectures and introducing two innovative approaches called Multi Foundation Quake and GNNCoder. We formulate earthquake nowcasting as a time series forecasting problem for the next 14 days within 0.1-degree spatial bins in Southern California. Earthquake time series are generated using the logarithm energy released by quakes, spanning 1986 to 2024. Our comprehensive evaluations demonstrate that our introduced models outperform other custom architectures by effectively capturing temporal-spatial relationships inherent in seismic data. The performance of existing foundation models varies significantly based on the pre-training datasets, emphasizing the need for careful dataset selection. However, we introduce a novel method, Multi Foundation Quake, that achieves the best overall performance by combining a bespoke pattern with Foundation model results handled as auxiliary streams. 
    more » « less
  3. Classifying multivariate time series (MTS), which record the values of multiple variables over a continuous period of time, has gained a lot of attention. However, existing techniques suffer from two major issues. First, the long-range dependencies of the time-series sequences are not well captured. Second, the interactions of multiple variables are generally not represented in features. To address these aforementioned issues, we propose a novel Cross Attention Stabilized Fully Convolutional Neural Network (CA-SFCN) to classify MTS data. First, we introduce a temporal attention mechanism to extract long- and short-term memories across all time steps. Second, variable attention is designed to select relevant variables at each time step. CA-SFCN is compared with 16 approaches using 14 different MTS datasets. The extensive experimental results show that the CA-SFCN outperforms state-of-the-art classification methods, and the cross attention mechanism achieves better performance than other attention mechanisms. 
    more » « less
  4. Spiking neural networks (SNNs) are well suited for spatio-temporal learning and implementations on energy-efficient event-driven neuromorphic processors. However, existing SNN error backpropagation (BP) methods lack proper handling of spiking discontinuities and suffer from low performance compared with the BP methods for traditional artificial neural networks. In addition, a large number of time steps are typically required to achieve decent performance, leading to high latency and rendering spike based computation unscalable to deep architectures. We present a novel Temporal Spike Sequence Learning Backpropagation (TSSL-BP) method for training deep SNNs, which breaks down error backpropagation across two types of inter-neuron and intra-neuron dependencies and leads to improved temporal learning precision. It captures inter-neuron dependencies through presynaptic firing times by considering the all-or-none characteristics of firing activities, and captures intra-neuron dependencies by handling the internal evolution of each neuronal state in time. TSSL-BP efficiently trains deep SNNs within a much shortened temporal window of a few steps while improving the accuracy for various image classification datasets including CIFAR10. 
    more » « less
  5. Knowledge discovery and information extraction of large and complex datasets has attracted great attention in wide-ranging areas from statistics and biology to medicine. Tools from machine learning, data mining, and neurocomputing have been extensively explored and utilized to accomplish such compelling data analytics tasks. However, for time-series data presenting active dynamic characteristics, many of the state-of-the-art techniques may not perform well in capturing the inherited temporal structures in these data. In this paper, integrating the Koopman operator and linear dynamical systems theory with support vector machines (SVMs), we develop a novel dynamic data mining framework to construct low-dimensional linear models that approximate the nonlinear flow of high-dimensional time-series data generated by unknown nonlinear dynamical systems. This framework then immediately enables pattern recognition, e.g., classification, of complex time-series data to distinguish their dynamic behaviors by using the trajectories generated by the reduced linear systems. Moreover, we demonstrate the applicability and efficiency of this framework through the problems of time-series classification in bioinformatics and healthcare, including cognitive classification and seizure detection with fMRI and EEG data, respectively. The developed Koopman dynamic learning framework then lays a solid foundation for effective dynamic data mining and promises a mathematically justified method for extracting the dynamics and significant temporal structures of nonlinear dynamical systems. 
    more » « less