Arctic landscapes are in a state of transition due to changes in climate occurring during both the summer and winter seasons. Scattered observations indicate that beavers (Castor canadensis) have moved from the forest into tundra areas during the last 20 years, likely in response to broader physical and ecosystem changes occurring in Arctic and Boreal regions. The implications of beaver inhabitation in the Arctic and Boreal are unique relative to other ecosystems due to the presence of permafrost and its vulnerability associated with beaver dams and inundation. Our study specifically examines the role of beavers in controlling surface water dynamics and related thermokarst development in low Arctic tundra regions. We mapped the number of beaver dams visible in sub-meter resolution satellite images acquired between 2002 and 2019 for a 100 square kilometer study area (12 years of imagery) near Kotzebue, Alaska and a 430 square kilometer study area (3 years of imagery) encompassing the entire northern Baldwin Peninsula, Alaska. We show that during the last two decades beaver-driven ecosystem engineering is responsible for the majority of surface water area changes and inferred thermokarst development in the study area. This has implications for interpreting surface water area changes and thermokarst dynamics in other Arctic and Boreal regions that may also result from beaver dam building activities. This geospatial dataset provides polygon vector files representing surface water area in a 100 square kilometer study area located near Kotzebue, Alaska. Surface water area maps were created using sub-meter resolution satellite imagery for the years 2002, 2007-2014, and 2017-2019. Image selection focused on cloud-free, ice-free, and calm surface water conditions with images being acquired between late-June and mid-August in a given year. All images were resampled to a spatial resolution of 70 centimeter to match the lowest resolution image in the time series prior to analysis. Within year image dates range from 25 June to 22 August with the average date of image acquisition being 17 July (table 1). Object-based image analysis was conducted in eCognition Essentials 1.3. 
                        more » 
                        « less   
                    
                            
                            Increase in beaver dams controls surface water and thermokarst dynamics in an Arctic tundra region, Baldwin Peninsula, northwestern Alaska
                        
                    
    
            Abstract Beavers are starting to colonize low arctic tundra regions in Alaska and Canada, which has implications for surface water changes and ice-rich permafrost degradation. In this study, we assessed the spatial and temporal dynamics of beaver dam building in relation to surface water dynamics and thermokarst landforms using sub-meter resolution satellite imagery acquired between 2002 and 2019 for two tundra areas in northwestern Alaska. In a 100 km2study area near Kotzebue, the number of dams increased markedly from 2 to 98 between 2002 and 2019. In a 430 km2study area encompassing the entire northern Baldwin Peninsula, the number of dams increased from 94 to 409 between 2010 and 2019, indicating a regional trend. Correlating data on beaver dam numbers with surface water area mapped for 12 individual years between 2002 and 2019 for the Kotzebue study area showed a significant positive correlation (R2= 0.61; p < .003). Beaver-influenced waterbodies accounted for two-thirds of the 8.3% increase in total surface water area in the Kotzebue study area during the 17 year period. Beavers specifically targeted thermokarst landforms in their dam building activities. Flooding of drained thermokarst lake basins accounted for 68% of beaver-influenced surface water increases, damming of lake outlets accounted for 26%, and damming of beaded streams accounted for 6%. Surface water increases resulting from beaver dam building likely exacerbated permafrost degradation in the region, but dam failure also factored into the drainage of several thermokarst lakes in the northern Baldwin Peninsula study region, which could promote local permafrost aggradation in freshly exposed lake sediments. Our findings highlight that beaver-driven ecosystem engineering must be carefully considered when accounting for changes occurring in some permafrost regions, and in particular, regional surface water dynamics in low Arctic and Boreal landscapes. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10166409
- Publisher / Repository:
- IOP Publishing
- Date Published:
- Journal Name:
- Environmental Research Letters
- Volume:
- 15
- Issue:
- 7
- ISSN:
- 1748-9326
- Page Range / eLocation ID:
- Article No. 075005
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Beavers (Castor canadensis) are rapidly colonizing the North American Arctic, transforming aquatic and riparian tundra ecosystems. Arctic tundra may respond differently than temperate regions to beaver engineering due to the presence of permafrost and the paucity of unfrozen water during winter. Here, we provide a detailed investigation of 11 beaver pond complexes across a climatic gradient in Arctic Alaska, addressing questions about the permafrost setting surrounding ponds, the influence of groundwater inputs on beaver colonization and resulting ponds, and the change in surface water and aquatic overwintering habitat. Using field measurements, in situ dataloggers, and remote sensing, we evaluate permafrost, water quality, pond ice phenology, and physical characteristics of impoundments, and place our findings in the context of pond age, local climate, permafrost setting, and the presence of perennial groundwater inputs. We show beavers are accelerating the effects of climate change by thawing permafrost adjacent to ponds and increasing liquid water during winter. Beavers often exploited perennial springs in discontinuous permafrost, and summertime water temperatures at spring‐fed (SF) beaver ponds were roughly 5°C lower than sites lacking springs (NS). Late winter liquid water was generally present at pond complexes, although liquid water below seasonal ice cover was shallow (5–82 cm at SF and 5–15 cm at NS ponds) and ice was thick (median: 85 cm). Water was less acidic at SF than NS sites and had higher specific conductance and more dissolved oxygen. We estimated 2.4 dams/km of stream at sites on the recently colonized (last ~10 years) Baldwin Peninsula and 7.4 dams/km on the Seward Peninsula, where beavers have been present longer (~20+ years) and groundwater‐surface water connectivity is more common. Our study highlights the importance of climatic and physiographic context, especially permafrost presence and groundwater inputs, in determining the characteristics of the Arctic beaver pond environment. As beavers continue their expansion into tundra regions, these characteristics will increasingly represent the future of aquatic and riparian Arctic ecosystems.more » « less
- 
            In recent decades, beavers have extended their range from the boreal forest into the Arctic tundra, altering tundra streams and surrounding permafrost at local to regional scales. In lower latitudes, beaver damming can convert streams, backwaters, and lake outlets into connected ponds, which in turn can change the course of channels, temperature of streams, sediment loads, energy exchange, aquatic habitat diversity and nutrient cycling, and riparian vegetation. In the Arctic, effects of beavers may include enhanced thawing of permafrost, increased stream temperatures, and changes in seasonal ice in streams, as well as complex ecosystem responses. This study will 1) document movement of beavers from the forest into tundra regions, 2) understand how stream engineering wrought by beavers will change the arctic tundra landscape and streams, and 3) predict how beavers will expand into tundra regions and alter stream and adjacent ecosystems. Results will be of interest to local communities and resource managers, and the team of investigators will convene a scientist and stakeholder workshop in Fairbanks, Alaska to synthesize observations, compare results from studies in temperate ecosystems, and clarify impacts of beaver expansion unique to the tundra biome. In April 2024 we used a ground penetrating radar (GPR) to image the subsurface surrounding beaver ponds in a tundra region near Kotzebue, Alaska. We used a Mala GX GPR (Mala Ground Explorer GPR) with a 450 megahertz (mhz) antenna and an integrated DGPS (differential global positioning system). GPS (global positioning system) location data is stored in the .cor file.more » « less
- 
            Beavers have established themselves as a key component of low arctic ecosystems over the past several decades. The data presented here document the occurrence, reconstruct the timing, and highlight the effects of beaver activity on a small creek valley confined by ice-rich permafrost on the Seward Peninsula, Alaska. We analyzed very high resolution satellite imagery to digitize beaver dams and stream channels from the years 2006, 2011, 2014, 2015, 2017, 2019, 2020, and 2021. We also acquired Uncrewed Aircract System (UAS) imagery on 06 August 2021 and created a 5 centimeter (cm) resolution orthophoto mosaic and a 15 cm resolution digital surface model. Our data show that beaver engineering between 2006 and 2021 caused a systems-level response to a small tundra stream that promoted lateral expansion of the creek valley into an ice-rich permafrost hillslope and development of a diffuse network of stream channels expanding the area of potential beaver engineering in the future. The datasets support the findings presented in this accepted paper - Jones, B.M., K.D. Tape, J.A. Clark, A.C. Bondurant, M.K. Ward Jones, B.V. Gaglioti, C.D. Elder, C. Witharana, and C.E. Miller. Accepted. Multi-dimensional remote sensing analysis documents beaver-induced permafrost degradation, Seward Peninsula, Alaska. Remote Sensing.more » « less
- 
            Beavers have established themselves as a key component of low arctic ecosystems over the past several decades. The data presented here document the occurrence, reconstruct the timing, and highlight the effects of beaver activity on a small creek valley confined by ice-rich permafrost on the Seward Peninsula, Alaska. We analyzed very high resolution satellite imagery to digitize beaver dams and stream channels from the years 2006, 2011, 2014, 2015, 2017, 2019, 2020, and 2021. We also acquired Uncrewed Aircract System (UAS) imagery on 06 August 2021 and created a 5 centimeter (cm) resolution orthophoto mosaic and a 15 cm resolution digital surface model. Our data show that beaver engineering between 2006 and 2021 caused a systems-level response to a small tundra stream that promoted lateral expansion of the creek valley into an ice-rich permafrost hillslope and development of a diffuse network of stream channels expanding the area of potential beaver engineering in the future. The datasets support the findings presented in this accepted paper - Jones, B.M., K.D. Tape, J.A. Clark, A.C. Bondurant, M.K. Ward Jones, B.V. Gaglioti, C.D. Elder, C. Witharana, and C.E. Miller. Accepted. Multi-dimensional remote sensing analysis documents beaver-induced permafrost degradation, Seward Peninsula, Alaska. Remote Sensing.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
