skip to main content


Title: Swan Lake Creek Study Reach Datasets - beaver dams, flowlines, and UAS imagery; Seward Peninsula, Alaska; 2006-2021
Beavers have established themselves as a key component of low arctic ecosystems over the past several decades. The data presented here document the occurrence, reconstruct the timing, and highlight the effects of beaver activity on a small creek valley confined by ice-rich permafrost on the Seward Peninsula, Alaska. We analyzed very high resolution satellite imagery to digitize beaver dams and stream channels from the years 2006, 2011, 2014, 2015, 2017, 2019, 2020, and 2021. We also acquired Uncrewed Aircract System (UAS) imagery on 06 August 2021 and created a 5 centimeter (cm) resolution orthophoto mosaic and a 15 cm resolution digital surface model. Our data show that beaver engineering between 2006 and 2021 caused a systems-level response to a small tundra stream that promoted lateral expansion of the creek valley into an ice-rich permafrost hillslope and development of a diffuse network of stream channels expanding the area of potential beaver engineering in the future. The datasets support the findings presented in this accepted paper - Jones, B.M., K.D. Tape, J.A. Clark, A.C. Bondurant, M.K. Ward Jones, B.V. Gaglioti, C.D. Elder, C. Witharana, and C.E. Miller. Accepted. Multi-dimensional remote sensing analysis documents beaver-induced permafrost degradation, Seward Peninsula, Alaska. Remote Sensing.  more » « less
Award ID(s):
1850578
NSF-PAR ID:
10473921
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
NSF Arctic Data Center
Date Published:
Subject(s) / Keyword(s):
["Arctic","Beavers","Geomorphology","Permafrost","Remote Sensing","Thermokarst","Tundra"]
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Beavers have established themselves as a key component of low arctic ecosystems over the past several decades. The data presented here document the occurrence, reconstruct the timing, and highlight the effects of beaver activity on a small creek valley confined by ice-rich permafrost on the Seward Peninsula, Alaska. We analyzed very high resolution satellite imagery to digitize beaver dams and stream channels from the years 2006, 2011, 2014, 2015, 2017, 2019, 2020, and 2021. We also acquired Uncrewed Aircract System (UAS) imagery on 06 August 2021 and created a 5 centimeter (cm) resolution orthophoto mosaic and a 15 cm resolution digital surface model. Our data show that beaver engineering between 2006 and 2021 caused a systems-level response to a small tundra stream that promoted lateral expansion of the creek valley into an ice-rich permafrost hillslope and development of a diffuse network of stream channels expanding the area of potential beaver engineering in the future. The datasets support the findings presented in this accepted paper - Jones, B.M., K.D. Tape, J.A. Clark, A.C. Bondurant, M.K. Ward Jones, B.V. Gaglioti, C.D. Elder, C. Witharana, and C.E. Miller. Accepted. Multi-dimensional remote sensing analysis documents beaver-induced permafrost degradation, Seward Peninsula, Alaska. Remote Sensing. 
    more » « less
  2. Beavers have established themselves as a key component of low arctic ecosystems over the past several decades. Beavers are widely recognized as ecosystem engineers, but their effects on permafrost-dominated landscapes in the Arctic remain unclear. In this study, we document the occurrence, reconstruct the timing, and highlight the effects of beaver activity on a small creek valley confined by ice-rich permafrost on the Seward Peninsula, Alaska using multi-dimensional remote sensing analysis of satellite (Landsat-8, Sentinel-2, Planet CubeSat, and DigitalGlobe Inc./MAXAR) and unmanned aircraft systems (UAS) imagery. Beaver activity along the study reach of Swan Lake Creek appeared between 2006 and 2011 with the construction of three dams. Between 2011 and 2017, beaver dam numbers increased, with the peak occurring in 2017 (n = 9). Between 2017 and 2019, the number of dams decreased (n = 6), while the average length of the dams increased from 20 to 33 m. Between 4 and 20 August 2019, following a nine-day period of record rainfall (>125 mm), the well-established dam system failed, triggering the formation of a beaver-induced permafrost degradation feature. During the decade of beaver occupation between 2011 and 2021, the creek valley widened from 33 to 180 m (~450% increase) and the length of the stream channel network increased from ~0.6 km to more than 1.9 km (220% increase) as a result of beaver engineering and beaver-induced permafrost degradation. Comparing vegetation (NDVI) and snow (NDSI) derived indices from Sentinel-2 time-series data acquired between 2017 and 2021 for the beaver-induced permafrost degradation feature and a nearby unaffected control site, showed that peak growing season NDVI was lowered by 23% and that it extended the length of the snow-cover period by 19 days following the permafrost disturbance. Our analysis of multi-dimensional remote sensing data highlights several unique aspects of beaver engineering impacts on ice-rich permafrost landscapes. Our detailed reconstruction of the beaver-induced permafrost degradation event may also prove useful for identifying degradation of ice-rich permafrost in optical time-series datasets across regional scales. Future field- and remote sensing-based observations of this site, and others like it, will provide valuable information for the NSF-funded Arctic Beaver Observation Network (A-BON) and the third phase of the NASA Arctic-Boreal Vulnerability Experiment (ABoVE) Field Campaign. 
    more » « less
  3. Emergence of beavers as ecosystem engineers in the New Arctic project focuses on establishing field sites at tundra beaver ponds to study the implications of beaver engineering on hydrology and permafrost. Drones are being used to collect baseline data and track beaver dam building and pond evolution over time. This dataset consists of a multispectral orthomosaic derived from drone surveys on 09 August 2021 at the Glacier Creek Road site on the Seward Peninsula, Alaska. 3,648 digital images from five spectral bands were acquired from a DJI Phantom 4 Real-Time Kinematic (DJI P4RTK) quadcopter with a DJI D-RTK 2 Mobile Base Station. The mapped area was around 45 hectares (ha). The drone system was flown at 120 meters (m) above ground level (agl) and images were captured using the hover and capture at point mode. The orientation of the camera was set to 90 degrees (i.e. looking straight down). The along-track overlap and across-track overlap of the mission were set at 80% and 70%, respectively. All images were processed in the software Pix4D Mapper (v. 4.8.4) using the standard 3D Maps workflow and the accurate geolocation and orientation calibration method to produce the multispectral orthophoto mosaic at a spatial resolution of 10 centimeters (cm). Images of a MicaSense calibrated reflectance panel were used for radiometric processing and calibration of each spectral band in the Index Calculator in Pix4D. A Leica Viva differential global positioning system (GPS) provided ground control for the mission and the data were post-processed to WGS84 UTM Zone 3 North. 
    more » « less
  4. Emergence of beavers as ecosystem engineers in the New Arctic project focuses on establishing field sites at tundra beaver ponds to study the implications of beaver engineering on hydrology and permafrost. Drones are being used to collect baseline data and track beaver dam building and pond evolution over time. This dataset consists of an orthomosaic and digital surface model (DSM) derived from drone surveys on 10 August 2021 at the Willow Creek site on the Seward Peninsula, Alaska. 891 digital images were acquired from a DJI Phantom 4 Real-Time Kinematic (DJI P4RTK) quadcopter with a DJI D-RTK 2 Mobile Base Station. The mapped area was around 145 hectares (ha). The drone system was flown at 120 meters (m) above ground level (agl) and flight speeds varied from 8-9 meters/second (m/s). The orientation of the camera was set to 90 degrees (i.e. looking straight down). The along-track overlap and across-track overlap of the mission were set at 80% and 70%, respectively. All images were processed in the software Pix4D Mapper (v. 4.7.5) using the standard 3D Maps workflow and the accurate geolocation and orientation calibration method to produce the orthophoto mosaic and digital surface model at spatial resolutions of 5 and 10 centimeters (cm), respectively. Elevation information derived over waterbodies is noisy and does not represent the surface elevation of the feature. A Leica Viva differential global positioning system (GPS) provided ground control for the mission and the data were post-processed to WGS84 UTM Zone 3 North in Ellipsoid Heights (meters). 
    more » « less
  5. Emergence of beavers as ecosystem engineers in the New Arctic project focuses on establishing field sites at tundra beaver ponds to study the implications of beaver engineering on hydrology and permafrost. Drones are being used to collect baseline data and track beaver dam building and pond evolution over time. This dataset consists of an orthomosaic and digital surface model (DSM) derived from drone surveys on 09 August 2021 at the Glacier Creek Road site on the Seward Peninsula, Alaska. 258 digital images were acquired from a DJI P4RTK quadcopter with a DJI D-RTK 2 Mobile Base Station. The mapped area was around 45 hectares (ha). The drone system was flown at 120 meters (m) above ground level (agl) and flight speeds varied from 8-9 meters/second (m/s). The orientation of the camera was set to 90 degrees (i.e. looking straight down). The along-track overlap and across-track overlap of the mission were set at 80% and 70%, respectively. All images were processed in the software Pix4D Mapper (v. 4.8.4) using the standard 3D Maps workflow and the accurate geolocation and orientation calibration method to produce the orthophoto mosaic and digital surface model at spatial resolutions of 5 and 10 centimeters (cm), respectively. Elevation information derived over waterbodies is noisy and does not represent the surface elevation of the feature. A Leica Viva differential global positioning system (GPS) provided ground control for the mission and the data were post-processed to WGS84 UTM Zone 3 North in Ellipsoid Heights (meters). 
    more » « less