skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, December 13 until 2:00 AM ET on Saturday, December 14 due to maintenance. We apologize for the inconvenience.


Title: Generation and Rearrangement of (1-Hydroxycyclopropyl)- and (1-Hydroxycyclobutyl)carbene
Photolysis of exo-1-(1a,9b-dihydro-1H-cyclopropa[l]phenanthren-1-yl)cyclopropan-1-ol and exo-1-(1a,9b-dihydro-1H-cyclopropa[l]phenanthren-1-yl)cyclobutan-1-ol in benzene-d6 produces (1-hydroxycyclopropyl)- and (1-hydroxycyclobutyl)carbene respectively. It was observed that (1-hydroxycyclopropyl)carbene rearranges to cyclobutanone whereas (1-hydroxycyclobutyl)carbene forms cyclopentanone. Formation of both ketones is attributed to tautomerization of the corresponding enols that arise from ring expansion of the carbenes. Products assignable to intramolecular C–H insertions were not detected in the photolysates.  more » « less
Award ID(s):
1665278
PAR ID:
10166485
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Australian Journal of Chemistry
Volume:
72
Issue:
11
ISSN:
0004-9425
Page Range / eLocation ID:
890
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Energetic properties of bistetrazole derivatives are improved by the step-by-step introduction of functionalities which improve heat of formation, density, and oxygen content. The incorporation of unsaturation between bis(1 H -tetrazol-5-yl) and bis(1 H -tetrazol-1-ol) derivatives leads to planarity which enhances the density of the final product. In this manuscript, we have synthesized compounds 1,2-di(1 H -tetrazol-5-yl)ethane (4), ( E )-1,2-di(1 H -tetrazol-5-yl)ethene (5), and ( E )-5,5′-(ethene-1,2-diyl)bis(1 H -tetrazol-1-ol), (6) using readily available starting materials. Their corresponding dihydroxylammonium salts 7, 8 and 9 are obtained by reacting two equivalents of hydroxylamine (50% in water). New compounds are analyzed using IR, EA, DSC and multinuclear NMR spectroscopy ( 1 H, 13 C and 15 N). The solid-state structures of compounds 6, 7, 8 and 9 are confirmed by single-crystal X-ray diffraction. The energetic performances are calculated using the EXPLO5 (v6.06.02) code and the sensitivities towards external stimuli such as friction and impact are determined according to BAM standard. Compound 6 {( E )-5,5′-(ethene-1,2-diyl)bis(1 H -tetrazol-1-ol)} exhibits a surprisingly high density of 1.91 g cm −3 at 100 K (1.86 g cm −3 at 298 K). Its detonation velocity (9017 m s −1 ) is considerably superior to those of RDX (8795 m s −1 ), which suggests it is a competitive high-energy-density material. 
    more » « less
  2. The reaction of 2-(1H-pyrrol-1-yl)ethanol with 3-hydroxyflavone in the presence of copper(II) bromide yielded a dimeric copper(II) complex, [μ-O-(κ2-O,O-flav)(κ2-N,O-2PEO)Cu]2 (1) (flav = 3-hydroxyflavonolate; 2PEO = 2-(1H-pyrrol-1-yl)ethanolate) with both the flav and 2PEO ligands bound to the copper(II) atom in a κ2-bonding mode. The dimer is held electrostatically by bridging oxygen atoms between two copper atoms. Complex 1 was characterized by single-crystal X-ray diffraction, infrared, and UV-Vis spectroscopy, elemental analysis, and melting point determination. The complex crystallizes in the monoclinic space group P21/n (14) with cell values of a = 11.85340(10) Å, b = 8.51480(10) Å, c = 23.8453(2) Å; β = 99.3920(10)°.

     
    more » « less
  3. The title thiazole orange derivative, bearing an alkene substituent, crystallized as a monohydrate of its iodide salt, namely, (Z)-1-(hex-5-en-1-yl)-4-{[3-methyl-2,3-dihydro-1,3-benzothiazol-2-ylidene]methyl}quinolin-1-ium iodide monohydrate, C24H25N2S+·I·H2O. The packing features aromatic π-stacking and van der Waals interactions. The water molecule of crystallization interacts with the cation and anionviaO—H...N and O—H...I hydrogen bonds, respectively.

     
    more » « less
  4. ipso -Arylative cross-coupling with two 3-hexylthiophene derivatives, (5-bromo-4-hexylthiophen-2-yl)diphenylmethanol and 2-(5-bromo-4-hexylthiophen-2-yl)propan-2-ol, has been used to prepare poly(3-hexylhiophene) (P3HT) as a model conjugated polymer. P3HT with number-average molecular weights ranging from 8–20 kg mol −1 ( Đ 1.4–2.2) was prepared from 5-bromo-4-hexylthiophen-2-yl)diphenylmethanol with a Pd(OAc) 2 /PCy 3 /Cs 2 CO 3 catalyst system. Only oligomerization of 2-(5-bromo-4-hexylthiophen-2-yl)propan-2-ol ( M n ≈ 3 kg mol −1 ) was observed under similar conditions. Studies with model compounds suggest that side reactions involving end-group loss limit ultimate molecular weights. 
    more » « less
  5. Coordination of the leucoverdazyl ligand 2,4-diisopropyl-6-(pyridin-2-yl)-1,4-dihydro-1,2,4,5-tetrazin-3(2H)-one VdH to Ru significantly weakens the ligand’s N-H bond. Electrochemical measurements show that the metalated leucoverdazyl Ru(VdH)(acetylacetonate)2 RuVdH has a lower pKa (-5 units), BDFE (-7 kcal/mol), and hydricity (-22 kcal/mol) than the free ligand. DFT calculations suggest that the increased acidity is in part attributable to the stabilization of the conjugate base Vd-. When free, Vd- distorts to avoid an 8πe- antiaromatic state, but it remains planar when bound to Ru. Proton-coupled electron transfer (PCET) behavior is observed for both the free and metalated leucoverdazyls. PCET equilibrium between Vd radical and TEMPOH affords a VdH BDFE that is in good agreement with that obtained from electrochemical methods. RuVd exhibits electrocatalytic PCET donor behavior. Under acidic conditions, it reduces the persistent trityl radical ·CAr3 (Ar = p-tert-butylphenyl) to the corresponding triarylmethane HCAr3 via net 1e-/1H+ transfer from RuVdH. 
    more » « less