skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Testing the phylogeny of Periptychidae and "archaic" Paleocene mammals uner different optimality criteria
It is now well established that the end-Cretaceous mass extinction had enormous repercussions for mammalian evolution. Following the extinction, during the Paleocene, mammals started to radiate, occupying new and diverse ecological niches. However, the phylogenetic relationships between the socalled “archaic” mammals of this time, and their position within Placentalia, remain contentious. The Periptychidae are a clade of distinctive “archaic” ungulates, composed of ~17 genera of small to large bodied, highly bunodont, terrestrial herbivores that were among the first placental mammals to appear after the end-Cretaceous mass extinction. Although the Periptychidae has been historically considered a distinctive “condylarth” subgroup, their higherlevel relationships have been rarely tested. Here, we present an inclusive cladistic analysis to determine and test the phylogenetic affinities of Periptychidae and other key Paleocene groups within Placentalia under different cladistic optimality criteria. We scored 140 taxa for 503 dental, cranial and postcranial characters, incorporating new morphological and taxonomic data. The data were then subject to parsimony and Bayesian tree of morphological evolution, running 5000000 generations with samples every 200 generations and discarding 25% of the samples as burn-in. Stationarity was achieved and a 50 percent majority rule consensus tree from the sampled trees was obtained. The parsimony analysis recovered 48 most parsimonious trees. The two consensus trees derived from the different analyses are largely congruent and recover a monophyletic Periptychidae, although the parsimony consensus tree is better resolved. These results are consistent with simulation studies showing that parsimony tends to be more precise (more nodes reconstructed) than Bayesian analyses, although less accurate. The main topological differences between the results relate to the position of poorly known Puercan (earliest Paleocene) species. Our results affirm the monophyly of Periptychidae and its nesting within a group of “condylarths” positioned at the base of Laurasiatheria and closely related to Artiodactyla. Within Periptychidae we found support for the three major subfamilial divisions in both analyses. These results highlight the importance of using different optimality criteria when resolving a phylogeny and provide a new insight into how placental mammals were evolving after the end-Cretaceous extinction. Grant Information: CONICYT PFCHA/DOCTORADO BECAS CHILE/2018, European Research Council Starting Grant (ERC StG 2017, 756226, PalM), National Science Foundation (NSF EAR 1654952, DEB 1654949)  more » « less
Award ID(s):
1654952
PAR ID:
10166506
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Journal of Vertebrate Paleontology, Abstracts and Program
Volume:
2019
Page Range / eLocation ID:
174
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Resolving the phylogenetic relationships among Paleocene mammals has been a longstanding goal in paleontology. Constructing an accurate and comprehensive phylogeny for Paleocene mammals is a worthwhile objective in itself, but it also provides a framework on which we can better understand the origin of placental mammals and the evolutionary processes underlying the diversification of mammals before, during, and after the end-Cretaceous mass extinction. More recently, a robust Palaeocene mammal phylogeny has become a much-coveted tool for reconciling discrepancies between morphological and molecular evidence for the phylogeny and diversification of Placentalia. Here, we present a novel phylogenetic dataset to test hypotheses regarding Paleocene mammal phylogeny and the origin and diversification of Placentalia. To date, our matrix combines phenomic data for 36 extant mammal species and 107 fossil species scored for 2540 morphological characters alongside 26 genes sequenced for 47 species. We utilized a reductive morphological scoring strategy in order to minimize assumptions and test hypotheses on homology. Multiple sequence alignments were performed in MEGA-X for each gene. We then analysed the data using Bayesian methods and explored the effects of different approaches. Relaxed clock analyses using a molecular constraint and an FBD prior are congruent with the diversification of many extant orders prior to the K-Pg boundary. Relaxed clocked total-evidence analyses (morphology and molecules) using an FBD prior resulted in older ages of diversification than those estimated by our relaxed clock molecular constraint model and previous molecular studies. Within Placentalia, our phylogenies provide support for the divergence of Atlantogenata (Afrotheria and Xenarthra) from Boreoeutheria (Euarchontoglires and Laurasiatheria). Among the Paleocene taxa, ‘condylarths’ are distributed along the base of Laurasiatheria with members of ‘Arctocyonidae’ recovered as sister taxa to Artiodactyla; enigmatic groups such as Pantodonta and Taeniodonta are recovered as crown placentals whereas Leptictida is not. Our Paleocene mammal phylogeny is a critical step toward better understanding placental mammal evolution. Ultimately, this work will facilitate the investigation of fundamental questions previously encumbered by the lack of a well-resolved phylogeny. 
    more » « less
  2. South American Ungulates (SANUs) exhibit astonishing morphological and ecological diversity due to their almost complete isolation during their early evolution. This unique diversity coupled with the limited fossil record of their earliest evolution makes it difficult to establish their phylogenetic position within the placental mammal tree. Litopterna is the second most diverse order of SANUs after only Notoungulata, with species ranging from the middle Paleocene (~63 Ma) to the late Pleistocene. Among SANUs, litopterns are characterized by having cursorial limbs similar to Holarctic groups like Perissodactyla. Currently there are 67 genera of litopterns grouped into nine families, and the affinities of the Paleogene families remain unclear. Furthermore, it is unclear how litopterns are related to older groups of “archaic” Paleogene ungulates of South America (Kollpaninae and Didolodontidae) and North America (e.g., Mioclaenidae), and other SANUs. To test the phylogenetic relationships of Litopterna, we assembled a new morphological matrix with ~1000 craniodental and postcranial characters for 79 taxa. The data were subjected to Bayesian and maximum parsimony analyses. We conducted tip-dated and undated Bayesian analyses using a Mk + G model of morphological evolution. Fifty percent majority rule consensus trees were obtained from the sampled trees from each analysis. The parsimony analysis resulted in ten most parsimonious trees and a strict consensus was computed. The consensus trees derived from the different analyses were largely congruent. A traditional monophyletic Litopterna failed to be recovered as Protolipternidae was closely related to Didolodontidae. Litopterna was found more closely related to Kollpaninae than to North American Mioclaenidae, and Kollpaninae did not form a monophyletic group with the latter. Adianthidae and Indaleciidae were found in a relatively basal position within Litopterna. Macraucheniidae was found as a sister group to Proterotheriidae, whereas Anisolambdidae was the sister group of Sparnotheriodontidae, these four families forming a monophyletic group. By utilizing a more comprehensive approach, these results alter previous conceptions of the intrafamilial affinities within Litopterna and their position among other Paleogene ungulates, shedding new light on how litopterns evolved and diversified during the Paleogene of South America. Funding Sources ANID-PFCHA-Doctorado en el extranjero Becas Chile-2018-72190003, ERC starting grant PalM 756226, NSF DEB 1654949 and 1654952 
    more » « less
  3. The end-Cretaceous mass extinction, 66 million years ago, profoundly reshaped the biodiversity of our planet. After likely originating in the Cretaceous, placental mammals (species giving live birth to well-developed young) survived the extinction and quickly diversified in the ensuing Paleocene. Compared to Mesozoic species, extant placentals have advanced neurosensory abilities, enabled by a proportionally large brain with an expanded neocortex. This brain construction was acquired by the Eocene, but its origins, and how its evolution relates to extinction survivorship and recovery, are unclear, because little is known about the neurosensory systems of Paleocene species. We used high-resolution computed tomography (CT) scanning to build digital brain models in 29 extinct placentals (including 23 from the Paleocene). We added these to data from the literature to construct a database of 98 taxa, from the Jurassic to the Eocene, which we assessed in a phylogenetic context. We find that the Phylogenetic Encephalization Quotient (PEQ), a measure of relative brain size, increased in the Cretaceous along branches leading to Placentalia, but then decreased in Paleocene clades (taeniodonts,phenacodontids, pantodonts, periptychids, and arctocyonids). Later, during the Eocene, the PEQ increased independently in all crown groups (e.g., euarchontoglirans and laurasiatherians). The Paleocene decline in PEQ was driven by body mass increasing much more rapidly after the extinction than brain volume. The neocortex remained small, relative to the rest of the brain, in Paleocene taxa and expanded independently in Eocene crown groups. The relative size of the olfactory bulbs, however, remained relatively stable over time, except for a major decrease in Euarchontoglires and some Eocene artiodactyls, while the petrosal lobules (associated with eye movement coordination) decreased in size in Laurasiatheria but increased in Euarchontoglires. Our results indicate that an enlarged, modern-style brain was not instrumental to the survival of placental mammal ancestors at the end-Cretaceous, nor to their radiation in the Paleocene. Instead, opening of new ecological niches post-extinction promoted the diversification of larger body sizes, while brain and neocortex sizes lagged behind. The independent increase in PEQ in Eocene crown groups is related to the expansion of the neocortex, possibly a response to ecological specialization as environments changed, long after the extinction. 
    more » « less
  4. Abstract The end‐Cretaceous mass extinction allowed placental mammals to diversify ecologically and taxonomically as they filled ecological niches once occupied by non‐avian dinosaurs and more basal mammals. Little is known, however, about how the neurosensory systems of mammals changed after the extinction, and what role these systems played in mammalian diversification. We here use high‐resolution computed tomography (CT) scanning to describe the endocranial and inner ear endocasts of two species,Chriacus pelvidensandChriacus baldwini, which belong to a cluster of ‘archaic’ placental mammals called ‘arctocyonid condylarths’ that thrived during theca. 10 million years after the extinction (the Paleocene Epoch), but whose relationships to extant placentals are poorly understood. The endocasts provide new insight into the paleobiology of the long‐mysterious ‘arctocyonids’, and suggest thatChriacuswas an animal with anencephalization quotient (EQ)range of 0.12–0.41, which probably relied more on its sense of smell than vision, because the olfactory bulbs are proportionally large but the neocortex and petrosal lobules are less developed. Agility scores, estimated from the dimensions of the semicircular canals of the inner ear, indicate thatChriacuswas slow to moderately agile, and its hearing capabilities, estimated from cochlear dimensions, suggest similarities with the extant aardvark.Chriacusshares many brain features with other Paleocene mammals, such as a small lissencephalic brain, large olfactory bulbs and small petrosal lobules, which are likely plesiomorphic for Placentalia. The inner ear ofChriacusalso shares derived characteristics of the elliptical and spherical recesses with extinct species that belong to Euungulata, the extant placental group that includes artiodactyls and perissodactyls. This lends key evidence to the hypothesized close relationship betweenChriacusand the extant ungulate groups, and demonstrates that neurosensory features can provide important insight into both the paleobiology and relationships of early placental mammals. 
    more » « less
  5. ABSTRACT Mammals underwent a profound diversification after the end‐Cretaceous mass extinction, with placentals rapidly expanding in body size and diversity to fill new niches vacated by dinosaurs. Little is known, however, about the brains and senses of these earliest placentals, and how neurosensory features may have promoted their survival and diversification. We here use computed tomography (CT) to describe the brain, inner ear, sinuses, and endocranial nerves and vessels ofCarsioptychus coarctatus, a periptychid “condylarth” that was among the first placentals to blossom during the few million years after the extinction, in the Paleocene.Carsioptychushas a generally primitive brain and inner ear that is similar to the inferred ancestral eutherian/placental condition. Notable “primitive” features include the large, anteriorly expanded, and conjoined olfactory bulbs, proportionally small neocortex, lissencephalic cerebrum, and large hindbrain compared to the cerebrum. An encephalization quotient (EQ) cannot be confidently calculated because of specimen crushing but was likely very small, and comparisons with other extinct placentals reveal that many Paleocene “archaic” mammals had EQ values below the hallmark threshold of modern placentals but within the zone of nonmammalian cynodonts, indicative of small brains and low intelligence.Carsioptychusdid, however, have a “conventional” hearing range for a placental, but was not particularly agile, with semicircular canal dimensions similar to modern pigs. This information fleshes out the biology of a keystone Paleocene “archaic” placental, but more comparative work is needed to test hypotheses of how neurosensory evolution was related to the placental radiation. Anat Rec, 302:306–324, 2019. © 2018 Wiley Periodicals, Inc. 
    more » « less