It is now well established that the end-Cretaceous mass extinction had enormous repercussions for mammalian evolution. Following the extinction, during the Paleocene, mammals started to radiate, occupying new and diverse ecological niches. However, the phylogenetic relationships between the socalled “archaic” mammals of this time, and their position within Placentalia, remain contentious. The Periptychidae are a clade of distinctive “archaic” ungulates, composed of ~17 genera of small to large bodied, highly bunodont, terrestrial herbivores that were among the first placental mammals to appear after the end-Cretaceous mass extinction. Although the Periptychidae has been historically considered a distinctive “condylarth” subgroup, their higherlevel relationships have been rarely tested. Here, we present an inclusive cladistic analysis to determine and test the phylogenetic affinities of Periptychidae and other key Paleocene groups within Placentalia under different cladistic optimality criteria. We scored 140 taxa for 503 dental, cranial and postcranial characters, incorporating new morphological and taxonomic data. The data were then subject to parsimony and Bayesian tree of morphological evolution, running 5000000 generations with samples every 200 generations and discarding 25% of the samples as burn-in. Stationarity was achieved and a 50 percent majority rule consensus tree from the sampled trees was obtained. The parsimony analysis recovered 48 most parsimonious trees. The two consensus trees derived from the different analyses are largely congruent and recover a monophyletic Periptychidae, although the parsimony consensus tree is better resolved. These results are consistent with simulation studies showing that parsimony tends to be more precise (more nodes reconstructed) than Bayesian analyses, although less accurate. The main topological differences between the results relate to the position of poorly known Puercan (earliest Paleocene) species. Our results affirm the monophyly of Periptychidae and its nesting within a group of “condylarths” positioned at the base of Laurasiatheria and closely related to Artiodactyla. Within Periptychidae we found support for the three major subfamilial divisions in both analyses. These results highlight the importance of using different optimality criteria when resolving a phylogeny and provide a new insight into how placental mammals were evolving after the end-Cretaceous extinction. Grant Information: CONICYT PFCHA/DOCTORADO BECAS CHILE/2018, European Research Council Starting Grant (ERC StG 2017, 756226, PalM), National Science Foundation (NSF EAR 1654952, DEB 1654949)
more »
« less
NEW PHYLOGENY OF LITOPTERNA AND “ARCHAIC” PALEOGENE UNGULATES ENLIGHTENS THE INTERFAMILIARY AFFINITIES WITHIN THE ORDER
South American Ungulates (SANUs) exhibit astonishing morphological and ecological diversity due to their almost complete isolation during their early evolution. This unique diversity coupled with the limited fossil record of their earliest evolution makes it difficult to establish their phylogenetic position within the placental mammal tree. Litopterna is the second most diverse order of SANUs after only Notoungulata, with species ranging from the middle Paleocene (~63 Ma) to the late Pleistocene. Among SANUs, litopterns are characterized by having cursorial limbs similar to Holarctic groups like Perissodactyla. Currently there are 67 genera of litopterns grouped into nine families, and the affinities of the Paleogene families remain unclear. Furthermore, it is unclear how litopterns are related to older groups of “archaic” Paleogene ungulates of South America (Kollpaninae and Didolodontidae) and North America (e.g., Mioclaenidae), and other SANUs. To test the phylogenetic relationships of Litopterna, we assembled a new morphological matrix with ~1000 craniodental and postcranial characters for 79 taxa. The data were subjected to Bayesian and maximum parsimony analyses. We conducted tip-dated and undated Bayesian analyses using a Mk + G model of morphological evolution. Fifty percent majority rule consensus trees were obtained from the sampled trees from each analysis. The parsimony analysis resulted in ten most parsimonious trees and a strict consensus was computed. The consensus trees derived from the different analyses were largely congruent. A traditional monophyletic Litopterna failed to be recovered as Protolipternidae was closely related to Didolodontidae. Litopterna was found more closely related to Kollpaninae than to North American Mioclaenidae, and Kollpaninae did not form a monophyletic group with the latter. Adianthidae and Indaleciidae were found in a relatively basal position within Litopterna. Macraucheniidae was found as a sister group to Proterotheriidae, whereas Anisolambdidae was the sister group of Sparnotheriodontidae, these four families forming a monophyletic group. By utilizing a more comprehensive approach, these results alter previous conceptions of the intrafamilial affinities within Litopterna and their position among other Paleogene ungulates, shedding new light on how litopterns evolved and diversified during the Paleogene of South America. Funding Sources ANID-PFCHA-Doctorado en el extranjero Becas Chile-2018-72190003, ERC starting grant PalM 756226, NSF DEB 1654949 and 1654952
more »
« less
- Award ID(s):
- 1654952
- PAR ID:
- 10480926
- Publisher / Repository:
- Society of Vertebrate Paleontology
- Date Published:
- Journal Name:
- Journal of vertebrate paleontology
- ISSN:
- 1937-2809
- Format(s):
- Medium: X
- Location:
- Toronto, Ontario, Canada
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Chasmataspidids are a group of Early Paleozoic (Middle Ordovician-Middle Devonian)chelicerates defined by an apparently unique opisthosomal tagmosis consisting of a microtergite, a three-segmented fused buckler, and a nine-segmented postabdomen. Although the number of known chasmataspidid species increased by half during the past decade, the group has not been a subject of detailed phylogenetic analysis, and its placement within Chelicerata is uncertain. Though recent analyses that include chasmataspidids support a monophyletic Chasmataspidida as sister to Sclerophorata (Eurypterida and Arachnida), few have sampled more than three of the 14 currently recognized species. Previous workers have suggested chasmataspidids may be a polyphyletic or paraphyletic group, or that chasmataspidids may resolve as the sister taxon to eurypterids, or even as a clade within Eurypterida. Without a broader sampling of chasmataspidids it is not possible to adequately test these various hypotheses, while a robust phylogenetic framework in necessary for understanding macroevolutionary and biogeographic trends within the group. Chasmataspidids also represent the earliest preserved euchelicerate in the fossil record, with Chasmataspis dated to approximately 478 million years ago, and as such its phylogenetic position in relation to other euchelicerates has implications for the divergence times of those clades. We present a new phylogenetic matrix comprising 81 characters coded for every currently described chasmataspidid species, analysis of which under maximum parsimony and Bayesian inference results in concordant phylogenetic topologies. Chasmataspidida resolves as in most recent analyses as a monophyletic clade sister to Sclerophorata, indicating that Xiphosura, Chasmataspidida, and Sclerophorata likely diverged in the Early Ordovician. The analysis also supports a taxonomic revision within Chasmataspidida; we propose dividing the clade into two superfamilies, with four constituent families. As part of this study the Silurian taxon Loganamaraspis was reevaluated and the morphology of appendage VI, previously considered to be retained as a walking limb, could not be ascertained.more » « less
-
Abstract Caimaninae is one of the few crocodylian lineages that still has living representatives. Today, most of its six extant species are restricted to South and Central America. However, recent discoveries have revealed a more complex evolutionary history, with a fossil record richer than previously thought and a possible North American origin. Among the oldest caimanines isEocaiman cavernensis, from the Eocene of Patagonia, Argentina. It was described by George G. Simpson in the 1930s, representing the first caimanine reported for the Palaeogene. Since then,E. cavernensishas been ubiquitous in phylogenetic studies on the group, but a more detailed morphological description and revision of the taxon were lacking. Here, we present a reassessment ofE. cavernensis, based on first‐hand examination and micro‐computed tomography of the holotype, and reinterpret different aspects of its morphology. We explore the phylogenetic affinities ofE. cavernensisand other caimanines using parsimony and Bayesian inference approaches. Our results provide evidence for a monophyleticEocaimangenus within Caimaninae, even though some highly incomplete taxa (including the congenericEocaiman itaboraiensis) represent significant sources of phylogenetic instability. We also foundCulebrasuchus mesoamericanusas sister to all other caimanines and the North American globidontans (i.e.Brachychampsaand closer relatives) outside Caimaninae. A time‐calibrated tree, obtained using a fossilized birth–death model, shows a possible Campanian origin for the group (76.97 ± 6.7 Ma), which is older than the age estimated using molecular data, and suggests that the earliest cladogenetic events of caimanines took place rapidly and across the K–Pg boundary.more » « less
-
Abstract The phytophagous insect superfamily Coreoidea (Heteroptera) is a diverse group of ~3100 species in five extant families, with many of agricultural importance and model organisms in behavioural studies. Most species (~2800 species) are classified in the family Coreidae (four subfamilies, 37 tribes). While previous phylogenetic studies have primarily focused on the larger and more diverse subfamilies and tribes of Coreidae, several smaller tribes remain poorly studied in a phylogenetic context. Here, we investigated the phylogenetic positions of three less diverse tribes using ultraconserved elements: Agriopocorini, Amorbini, and Manocoreini. Our study is the first to test phylogenetic hypotheses for the Agriopocorini and Amorbini in a cladistic analysis. All three tribes were recovered within the subfamily Coreinae with robust support. The monophyletic Agriopocorini were supported as the sister-group of Colpurini, the monophyletic Amorbini as sister to Mictini, and the monogeneric Manocoreini as sister to Dasynini + Homoeocerini. We briefly discuss the evolution of wing development in Coreidae, putative synapomorphies for clades of interest, and taxonomic considerations. Our study emphasizes the importance of including smaller, less diverse groups in phylogenetic analyses. By doing so, we gain valuable insights into evolutionary relationships, identify future investigations of trait evolution, and resolve systematic controversies.more » « less
-
Abstract The family Mutillidae (Hymenoptera) is a species‐rich group of aculeate wasps that occur worldwide. The higher‐level classification of the family has historically been controversial due, in part, to the extreme sexual dimorphism exhibited by these insects and their morphological similarity to other wasp taxa that also have apterous females. Modern hypotheses on the internal higher classification of Mutillidae have been exclusively based on morphology and, further, they include Myrmosinae as a mutillid subfamily. In contrast, several molecular‐based family‐level studies of Aculeata recovered Myrmosinae as a nonmutillid taxon. To test the validity of these morphology‐based classifications and the phylogenetic placement of the controversial taxon Myrmosinae, a phylogenomic study of Mutillidae was conducted using ultraconserved elements (UCEs). All currently recognized subfamilies and tribes of Mutillidae were represented in this study using 140 ingroup taxa. The maximum likelihood criterion (ML) and the maximum parsimony criterion (MP) were used to infer the phylogenetic relationships within the family and related taxa using an aligned data set of 238,764 characters; the topologies of these respective analyses were largely congruent. The modern higher classification of Mutillidae, based on morphology, is largely congruent with the phylogenomic results of this study at the subfamily level, whereas the tribal classification is poorly supported. The subfamily Myrmosinae was recovered as sister to Sapygidae in the ML analysis and sister to Sapygidae + Pompilidae in the MP analysis; it is consequently raised to the family level, Myrmosidae,stat.nov.The two constituent tribes of Myrmosidae are raised to the subfamily level, Kudakrumiinae,stat.nov., and Myrmosinae,stat.nov.All four recognized tribes of Mutillinae were found to be non‐monophyletic; three additional mutilline clades were recovered in addition to Ctenotillini, Mutillini, Smicromyrmini, and Trogaspidiini sensu stricto. Three new tribes are erected for members of these clades: Pristomutillini Waldren,trib.nov., Psammothermini Waldren,trib.nov., and Zeugomutillini Waldren,trib.nov.All three recognized tribes of Sphaeropthalminae were found to be non‐monophyletic; six additional sphaeropthalmine clades were recovered in addition to Dasymutillini, Pseudomethocini, and Sphaeropthalmini sensu stricto. The subtribe Ephutina of Mutillinae: Mutillini was found to be polyphyletic, with theEphutagenus‐group recovered within Sphaeropthalminae and theOdontomutillagenus‐group recovered as sister to Myrmillinae + Mutillinae. Consequently, the subtribe Ephutina is transferred from Mutillinae: Mutillini and is raised to a tribe within Sphaeropthalminae, Ephutini,stat.nov.Further, the taxon Odontomutillinae,stat.nov., is raised from a synonym of Ephutina to the subfamily level. The sphaeropthalmine tribe Pseudomethocini was found to be polyphyletic, with the subtribe Euspinoliina recovered as a separate clade in Sphaeropthalminae; consequently, Euspinoliina is raised to a tribe, Euspinoliini,stat.nov., in Sphaeropthalminae. The dasylabrine tribe Apteromutillini was recovered within Dasylabrini and is proposed as a new synonym of Dasylabrinae. Finally, dating analyses were conducted to infer the ages of the Pompiloidea families (Mutillidae, Myrmosidae, Pompilidae, and Sapygidae) and the ages of the Mutillidae subfamilies and tribes.more » « less
An official website of the United States government

