skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Modeling the thermal and soot oxidation dynamics inside a ceria-coated gasoline particulate filter
Gasoline particulate filters (GPFs) are practically adoptable devices to mitigate particulate matter emissions from vehicles using gasoline direct ignition engines. This paper presents a newly developed control-oriented model to characterize the thermal and soot oxidation dynamics in a ceria-coated GPF. The model utilizes the GPF inlet exhaust gas temperature, exhaust gas mass flow rate, the initial GPF soot loading density, and air– fuel ratio to predict the internal GPF temperature and the amount of soot oxidized during regeneration events. The reaction kinetics incorporated in the model involve the rates of both oxygen- and ceria-initiated soot oxidation reactions. Volumetric model parameters are calculated from the geometric information of the coated GPF, while the air–fuel ratio is used to determine the volume fractions of the exhaust gas constituents. The exhaust gas properties are evaluated using the volume fractions and thermodynamic tables, while the cordierite specific heat capacity is identified using a clean experimental data set. The enthalpies of the regeneration reactions are calculated using thermochemical tables. Physical insights from the proposed model are thus enhanced by limiting the number of parameters obtained from fitting to only those which cannot be directly measured from experiments. The parameters of the model are identified using the particle swarm optimization algorithm and a cost function designed to simultaneously predict both thermal and soot oxidation dynamics. Parameter identification and model validation are performed using independent data sets from laboratory experiments conducted on a ceria-coated GPF. This work demonstrates that the proposed model can be successfully implemented to predict ceria-coated GPF dynamics under different soot loading and temperature conditions.  more » « less
Award ID(s):
1839050
PAR ID:
10166562
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Control engineering practice
ISSN:
1873-6939
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We propose a new pore-scale/channel model, or hybrid model, for the fluid flow and particulate transport in gasoline particulate filters (GPFs). GPFs are emission control devices aimed at removing particulate out of the exhaust system of a gasoline direct injection engine. In this study, we consider a wall-flow uncoated GPF, which is made of a bundle of inlet and outlet channels separated by porous walls. The particulate-filled exhaust gas flows into the inlet channels, and passes through the porous walls before exiting out of the outlet channels. We model the flow inside the inlet and outlet channels using the incompressible Navier–Stokes equation coupled with the spatially averaged Navier–Stokes equation for the flow inside the porous walls. For the particulate transport, the coupled advection and spatially averaged advection–reaction equations are used, where the reaction term models the particulate accumulation. Using OpenFOAM, we numerically solve the flow and the transport equations and show that the concentration of deposited particles is nonuniformly distributed along the filter length, with an increase of concentration at the back end of the filter as Reynolds number increases. Images from X-ray computed tomography (XCT)-scanning experiments of the soot-loaded filter show that such a nonuniform distribution is consistent with the prediction obtained from the model. Finally, we show how the proposed model can be employed to optimize the filter design to improve filtration efficiency. 
    more » « less
  2. Calibration of automotive engines to ensure compliance with emission regulations is a critical phase in product development. Control of engine-out particulate emissions, which directly impact the environment and public health, is particularly important. Detailed physics-based models are typically used to gain a rich understanding of the complex physical phenomena that drive the soot particle formation in an engine cylinder. However, such models often fail to correctly represent the highly dynamic nature of the underlying mechanisms under transient combustion conditions. Moreover, most physics-based models were initially developed for diesel engine applications and their applicability to gasoline engines remains questionable due to differences in flame structure and fuel-wall interactions. Black-box models have been previously proposed to predict engine-out soot emissions, but their lack of physical interpretability is an unsolved drawback. To address these limitations, we present a physics-aware twin-model machine learning framework to predict and analyze engine-out soot mass from a gasoline direct injection (GDI) engine. The framework combines a physics-based model with a bagging-type ensemble learning model that both maintains high accuracy and allows physical interpretation of results without using computationally intensive high-fidelity models. This work shows why a one-model-fits-all approach fails in the case of predicting soot emissions due to clustered co-occurrences of operating conditions that cause non-compliant behavior. We compare the performance of the proposed framework with that of the standalone baseline model and a feed-forward deep neural network. Using WLTP data from a 2.0L naturally aspirated GDI engine, the proposed framework predicts engine-out soot mass with an improvement of 29% in the R2 value and 21% in the root mean squared error from the baseline physics-based model, without compromising physical interpretability. These improvements are significant enough to warrant further framework development with additional engine datasets. 
    more » « less
  3. Abstract. Heterogeneous chemistry of oxidized carbons in aerosol phase is known to significantly contribute to secondary organic aerosol (SOA) burdens. TheUNIfied Partitioning Aerosol phase Reaction (UNIPAR) model was developed to process the multiphase chemistry of various oxygenated organics into SOAmass predictions in the presence of salted aqueous phase. In this study, the UNIPAR model simulated the SOA formation from gasoline fuel, which is amajor contributor to the observed concentration of SOA in urban areas. The oxygenated products, predicted by the explicit mechanism, were lumpedaccording to their volatility and reactivity and linked to stoichiometric coefficients which were dynamically constructed by predetermined mathematical equations at different NOx levels and degrees of gas aging. To improve the model feasibility in regional scales, the UNIPAR model was coupled with the Carbon Bond 6 (CB6r3) mechanism. CB6r3 estimated the hydrocarbon consumption and the concentration of radicals (i.e., RO2 and HO2) to process atmospheric aging of gas products. The organic species concentrations, estimated bystoichiometric coefficient array and the consumption of hydrocarbons, were applied to form gasoline SOA via multiphase partitioning andaerosol-phase reactions. To improve the gasoline SOA potential in ambient air, model parameters were also corrected for gas–wall partitioning(GWP). The simulated gasoline SOA mass was evaluated against observed data obtained in the University of Florida Atmospheric PHotochemical Outdoor Reactor (UF-APHOR) chamber under varying sunlight, NOx levels, aerosol acidity, humidity, temperature, and concentrations of aqueous salts and gasoline vapor. Overall, gasoline SOAwas dominantly produced via aerosol-phase reaction, regardless of the seed conditions owing to heterogeneous reactions of reactive multifunctionalorganic products. Both the measured and simulated gasoline SOA was sensitive to seed conditions showing a significant increase in SOA mass with increasing aerosol acidity and water content. A considerable difference in SOA mass appeared between two inorganic aerosol states (dry aerosol vs. wet aerosol) suggesting a large difference in SOA formation potential between arid (western United States) and humid regions (eastern United States). Additionally, aqueous reactions of organic products increased the sensitivity of gasoline SOA formation to NOx levels as well as temperature. The impact of the chamber wall on SOA formation was generally significant, and it appeared to be higher in the absence of wet salts. Based on the evaluation of UNIPAR against chamber data from 10 aromatic hydrocarbons and gasoline fuel, we conclude that the UNIPAR model with both heterogeneous reactions and the model parameters corrected for GWP can improve the ability to accurately estimate SOA mass in regional scales. 
    more » « less
  4. We perform spatially resolved measurements of light scattering of soot in atmospheric pressure counterflow diffusion flames to complement previously reported data on soot pyrometry, temperature and gaseous species up to three-ring polycyclic aromatic hydrocarbons (PAHs). We compare two flames: a baseline ethylene flame and a toluene-seeded flame in which an aliquot of ethylene in the feed stream is replaced with 3500 ppm of pre-vaporized toluene. The goal is twofold: directly adding an aromatic fuel to bypass the formation of the first aromatic ring, widely regarded as the main bottleneck to soot formation from aliphatic fuels, and assessing the impact of a common component of surrogates of transportation fuels on soot formation. The composition of the fuel and oxidizer streams are adjusted to ensure invariance of the temperature-time history, thereby decoupling the chemical effects of the fuel substitution from other factors. The doping approach enables the comparison of very similar flames with respect to combustion products, radicals and critical precursors to aromatic formation (C2–C5 species), in addition to the temperature-time history. Doping with toluene boosts the aromatic content and soot volume fraction relative to the baseline ethylene flame, but, surprisingly, the soot number density and nucleation rate are affected modestly. As a result, the observed difference in volume fraction in the toluene-doped flame is reflective of larger initial particles at the onset of soot nucleation. The nucleation rate when soot first appears near the flame is of the same order as the dimerization rate of single-ring aromatics, in contrast with the expectation that the dimerization of larger PAHs initiates the process. Even though in and of itself nucleation contributes modestly to the overall soot loading, nucleation conditions the overall soot loading by affecting the size of the initial particle, which ultimately affects subsequent growth. 
    more » « less
  5. The study of fuel chemistry and soot inception in non-premixed combustion can be advanced by characterizing flame configurations in which the advection and diffusion transport can be finely controlled, with the ability to decouple pyrolysis from oxidation. Also, the ideal flames to be investigated should be perturbed minimally by probes and thick enough for sampling techniques to yield spatially resolved measurements of their structure. The Planar Mixing Layer Flame (PMLF) configuration introduced herein is established between a fuel and an oxidizer slot jet adjacent to each other and shielded from the ambient air by annularly co-flowing inert nitrogen. The PMLF flow is kept laminar and steady by an impinging flat plate equipped with a rectangular exhaust slit opening which anchors the position of the hot combustion products via buoyancy. The PMLF is accessible to sampling and its flow stability is preserved when using any tested probe. The experiments are complemented with 2DComputational Fluid Dynamics (CFD) modeling with detailed chemical kinetics. The results demonstrate that the PMLF has a self-similar boundary layer structure whose horizontal cross-sections are equivalent to properly selected and equally thick 1D- Counterflow Flames (CFs). The equivalence allows for excellent predictions of the PMLF thermochemical structure characterized experimentally but at a small fraction of the 2D-CFD computational cost. The 1D-CF equivalence affects even aromatics less than twofold despite their kinetics being known to be very sensitive to the temperature field. Importantly, the PMLF thickness is several millimeters and grows at increasing HABs so that the equivalent 1D-CFs have strain rates as small as 7.0 /s which cannot be studied in CF experiments. As a result, the PMLF emerges as a promising canonical non-premixed flame configuration for studying flame chemistry and soot inception on time scales of tens of milliseconds typical of many combustion applications. 
    more » « less