The theory of mean field games is a tool to understand noncooperative dynamic stochastic games with a large number of players. Much of the theory has evolved under conditions ensuring uniqueness of the mean field game Nash equilibrium. However, in some situations, typically involving symmetry breaking, non-uniqueness of solutions is an essential feature. To investigate the nature of non-unique solutions, this paper focuses on the technically simple setting where players have one of two states, with continuous time dynamics, and the game is symmetric in the players, and players are restricted to using Markov strategies. All the mean field game Nash equilibria are identified for a symmetric follow the crowd game. Such equilibria correspond to symmetric $$\epsilon$$-Nash Markov equilibria for $$N$$ players with $$\epsilon$$ converging to zero as $$N$$ goes to infinity. In contrast to the mean field game, there is a unique Nash equilibrium for finite $N.$ It is shown that fluid limits arising from the Nash equilibria for finite $$N$$ as $$N$$ goes to infinity are mean field game Nash equilibria, and evidence is given supporting the conjecture that such limits, among all mean field game Nash equilibria, are the ones that are stable fixed points of the mean field best response mapping.
more »
« less
On Mean Field Games models for exhaustible commodities trade
We investigate a mean field game model for the production of exhaustible resources. In this model, firms produce comparable goods, strategically set their production rate in order to maximise profit, and leave the market as soon as they deplete their capacities. We examine the related Mean Field Game system and prove well-posedness for initial measure data by deriving suitable a priori estimates. Then, we show that feedback strategies which are computed from the Mean Field Game system provide ε -Nash equilibria to the corresponding N -Player Cournot game, for large values of N . This is done by showing tightness of the empirical process in the Skorokhod M 1 topology, which is defined for distribution-valued processes.
more »
« less
- Award ID(s):
- 1905449
- PAR ID:
- 10166615
- Date Published:
- Journal Name:
- ESAIM: Control, Optimisation and Calculus of Variations
- Volume:
- 26
- ISSN:
- 1292-8119
- Page Range / eLocation ID:
- 11
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The ideal free distribution in ecology was introduced by Fretwell and Lucas to model the habitat selection of animal populations. In this paper, we revisit the concept via a mean field game system with local coupling, which models a dynamic version of the habitat selection game in ecology. We establish the existence of classical solution of the ergodic mean field game system, including the case of heterogeneous diffusion when the underlying domain is one-dimensional and further show that the population density of agents converges to the ideal free distribution of the underlying habitat selection game, as the cost of control tends to zero. Our analysis provides a derivation of ideal free distribution in a dynamical context.more » « less
-
We formulate a mean field game where each player stops a privately observed Brownian motion with absorption. Players are ranked according to their level of stopping and rewarded as a function of their relative rank. There is a unique mean field equilibrium, and it is shown to be the limit of associated n-player games. Conversely, the mean field strategy induces n-player ε-Nash equilibria for any continuous reward function—but not for discontinuous ones. In a second part, we study the problem of a principal who can choose how to distribute a reward budget over the ranks and aims to maximize the performance of the median player. The optimal reward design (contract) is found in closed form, complementing the merely partial results available in the n-player case. We then analyze the quality of the mean field design when used as a proxy for the optimizer in the n-player game. Surprisingly, the quality deteriorates dramatically as n grows. We explain this with an asymptotic singularity in the induced n-player equilibrium distributions. Funding: M. Nutz is supported by an Alfred P. Sloan Fellowship and the Division of Mathematical Sciences of the National Science Foundation [Grants DMS-1812661 and DMS-2106056]. Y. Zhang is supported in part by the Natural Sciences and Engineering Research Council of Canada [NSERC Discovery Grant RGPIN-2020-06290].more » « less
-
We study a toy model of linear-quadratic mean field game with delay. We “lift" the delayed dynamic into an infinite dimensional space, and recast the mean field game system which is made of a forward Kolmogorov equation and a backward Hamilton-Jacobi-Bellman equation. We identify the corresponding master equation. A solution to this master equation is computed, and we show that it provides an approximation to a Nash equilibrium of the finite player game.more » « less
-
The classical Kuramoto model is studied in the setting of an infinite horizon mean field game. The system is shown to exhibit both syn- chronization and phase transition. Incoherence below a critical value of the interaction parameter is demonstrated by the stability of the uni- form distribution. Above this value, the game bifurcates and develops self-organizing time homogeneous Nash equilibria. As interactions get stronger, these stationary solutions become fully synchronized. Results are proved by an amalgam of techniques from nonlinear partial dif- ferential equations, viscosity solutions, stochastic optimal control and stochastic processes. ARTICLE HISTORY Received 23 October 2022 Accepted 17 June 2023 KEYWORDS Mean field games; Kuramoto model; synchronization; viscosity solutions 2020 MATHEMATICS SUBJECT CLASSIFICATION 35Q89; 35D40; 39N80; 91A16; 92B25 1. Introduction Originally motivated by systems of chemical and biological oscillators, the classical Kuramoto model [1] has found an amazing range of applications from neuroscience to Josephson junctions in superconductors, and has become a key mathematical model to describe self organization in complex systems. These autonomous oscillators are coupled through a nonlinear interaction term which plays a central role in the long time behavior of the system. While the system is unsynchronized when this term is not sufficiently strong, fascinatingly they exhibit an abrupt transition to self organization above a critical value of the interaction parameter. Synchronization is an emergent property that occurs in a broad range of complex systems such as neural signals, heart beats, fire-fly lights and circadian rhythms, and the Kuramoto dynamical system is widely used as the main phenomenological model. Expository papers [2, 3] and the references therein provide an excellent introduction to the model and its applications. The analysis of the coupled Kuramoto oscillators through a mean field game formalism is first explored by [4, 5] proving bifurcation from incoherence to coordination by a formal linearization and a spectral argument. [6] further develops this analysis in their application to a jet-lag recovery model. We follow these pioneering studies and analyze the Kuramoto model as a discounted infinite horizon stochastic game in the limit when the number of oscillators goes to infinity. We treat the system of oscillators as an infinite particle system, but instead of positing the dynamics of the particles, we let the individual particles endogenously determine their behaviors by minimizing a cost functional and hopefully, settling in a Nash equilibrium. Once the search for equilibrium is recast in this way, equilibria are given by solutions of nonlinear systems. Analytically, they are characterized by a backward dynamic CONTACT H. Mete Soner soner@princeton.edu Department of Operations Research and Financial Engineering, Prince- ton University, Princeton, NJ, 08540, USA. © 2023 Taylor & Francis Group, LLCmore » « less
An official website of the United States government

