skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Synchronization in a Kuramoto mean field game
The classical Kuramoto model is studied in the setting of an infinite horizon mean field game. The system is shown to exhibit both syn- chronization and phase transition. Incoherence below a critical value of the interaction parameter is demonstrated by the stability of the uni- form distribution. Above this value, the game bifurcates and develops self-organizing time homogeneous Nash equilibria. As interactions get stronger, these stationary solutions become fully synchronized. Results are proved by an amalgam of techniques from nonlinear partial dif- ferential equations, viscosity solutions, stochastic optimal control and stochastic processes. ARTICLE HISTORY Received 23 October 2022 Accepted 17 June 2023 KEYWORDS Mean field games; Kuramoto model; synchronization; viscosity solutions 2020 MATHEMATICS SUBJECT CLASSIFICATION 35Q89; 35D40; 39N80; 91A16; 92B25 1. Introduction Originally motivated by systems of chemical and biological oscillators, the classical Kuramoto model [1] has found an amazing range of applications from neuroscience to Josephson junctions in superconductors, and has become a key mathematical model to describe self organization in complex systems. These autonomous oscillators are coupled through a nonlinear interaction term which plays a central role in the long time behavior of the system. While the system is unsynchronized when this term is not sufficiently strong, fascinatingly they exhibit an abrupt transition to self organization above a critical value of the interaction parameter. Synchronization is an emergent property that occurs in a broad range of complex systems such as neural signals, heart beats, fire-fly lights and circadian rhythms, and the Kuramoto dynamical system is widely used as the main phenomenological model. Expository papers [2, 3] and the references therein provide an excellent introduction to the model and its applications. The analysis of the coupled Kuramoto oscillators through a mean field game formalism is first explored by [4, 5] proving bifurcation from incoherence to coordination by a formal linearization and a spectral argument. [6] further develops this analysis in their application to a jet-lag recovery model. We follow these pioneering studies and analyze the Kuramoto model as a discounted infinite horizon stochastic game in the limit when the number of oscillators goes to infinity. We treat the system of oscillators as an infinite particle system, but instead of positing the dynamics of the particles, we let the individual particles endogenously determine their behaviors by minimizing a cost functional and hopefully, settling in a Nash equilibrium. Once the search for equilibrium is recast in this way, equilibria are given by solutions of nonlinear systems. Analytically, they are characterized by a backward dynamic CONTACT H. Mete Soner soner@princeton.edu Department of Operations Research and Financial Engineering, Prince- ton University, Princeton, NJ, 08540, USA. © 2023 Taylor & Francis Group, LLC  more » « less
Award ID(s):
2106462
PAR ID:
10519306
Author(s) / Creator(s):
; ;
Publisher / Repository:
Taylor & Francis
Date Published:
Journal Name:
Communications in Partial Differential Equations
Volume:
48
Issue:
9
ISSN:
0360-5302
Page Range / eLocation ID:
1214 to 1244
Subject(s) / Keyword(s):
Mean field games Kuramoto model synchronization viscosity solutions
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper is concerned with two-person mean-field linear-quadratic non-zero sum stochastic differential games in an infinite horizon. Both open-loop and closed-loop Nash equilibria are introduced. The existence of an open-loop Nash equilibrium is characterized by the solvability of a system of mean-field forward-backward stochastic differential equations in an infinite horizon and the convexity of the cost functionals, and the closed-loop representation of an open-loop Nash equilibrium is given through the solution to a system of two coupled non-symmetric algebraic Riccati equations. The existence of a closed-loop Nash equilibrium is characterized by the solvability of a system of two coupled symmetric algebraic Riccati equations. Two-person mean-field linear-quadratic zero-sum stochastic differential games in an infinite horizon are also considered. Both the existence of open-loop and closed-loop saddle points are characterized by the solvability of a system of two coupled generalized algebraic Riccati equations with static stabilizing solutions. Mean-field linear-quadratic stochastic optimal control problems in an infinite horizon are discussed as well, for which it is proved that the open-loop solvability and closed-loop solvability are equivalent. 
    more » « less
  2. The theory of mean field games is a tool to understand noncooperative dynamic stochastic games with a large number of players. Much of the theory has evolved under conditions ensuring uniqueness of the mean field game Nash equilibrium. However, in some situations, typically involving symmetry breaking, non-uniqueness of solutions is an essential feature. To investigate the nature of non-unique solutions, this paper focuses on the technically simple setting where players have one of two states, with continuous time dynamics, and the game is symmetric in the players, and players are restricted to using Markov strategies. All the mean field game Nash equilibria are identified for a symmetric follow the crowd game. Such equilibria correspond to symmetric $$\epsilon$$-Nash Markov equilibria for $$N$$ players with $$\epsilon$$ converging to zero as $$N$$ goes to infinity. In contrast to the mean field game, there is a unique Nash equilibrium for finite $N.$ It is shown that fluid limits arising from the Nash equilibria for finite $$N$$ as $$N$$ goes to infinity are mean field game Nash equilibria, and evidence is given supporting the conjecture that such limits, among all mean field game Nash equilibria, are the ones that are stable fixed points of the mean field best response mapping. 
    more » « less
  3. The goal of the paper is to develop the theory of finite state mean field games with major and minor players when the state space of the game is finite. We introduce the finite player games and derive a mean field game formulation in the limit when the number of minor players tends to infinity. In this limit, we prove that the value functions of the optimization problems are viscosity solutions of PIDEs of the HJB type, and we construct the best responses for both types of players. From there, we prove existence of Nash equilibria under reasonable assumptions. Finally we prove that a form of propagation of chaos holds in the present context and use this result to prove existence of approximate Nash equilibria for the finite player games from the solutions of the mean field games. this vindicate our formulation of the mean field game problem. 
    more » « less
  4. The study of linear-quadratic stochastic differential games on directed networks was initiated in Feng, Fouque & Ichiba [7]. In that work, the game on a directed chain with finite or infinite players was defined as well as the game on a deterministic directed tree, and their Nash equilibria were computed. The current work continues the analysis by first developing a random directed chain structure by assuming the interaction between every two neighbors is random. We solve explicitly for an open-loop Nash equilibrium for the system and we find that the dynamics under equilibrium is an infinite-dimensional Gaussian process described by a Catalan Markov chain introduced in [7]. The discussion about stochastic differential games is extended to a random two-sided directed chain and a random directed tree structure. 
    more » « less
  5. null (Ed.)
    The study of linear-quadratic stochastic differential games on directed networks was initiated in Feng, Fouque & Ichiba [7]. In that work, the game on a directed chain with finite or infinite players was defined as well as the game on a deterministic directed tree, and their Nash equilibria were computed. The current work continues the analysis by first developing a random directed chain structure by assuming the interaction between every two neighbors is random. We solve explicitly for an open-loop Nash equilibrium for the system and we find that the dynamics under equilibrium is an infinite-dimensional Gaussian process described by a Catalan Markov chain introduced in [7]. The discussion about stochastic differential games is extended to a random two-sided directed chain and a random directed tree structure. 
    more » « less