skip to main content


Title: Mechanisms for Outsourcing Computation via a Decentralized Market
As the number of personal computing and IoT devices grows rapidly, so does the amount of computational power that is available at the edge. Since many of these devices are often idle, there is a vast amount of computational power that is currently untapped, and which could be used for outsourcing computation. Existing solutions for harnessing this power, such as volunteer computing (e.g., BOINC), are centralized platforms in which a single organization or company can control participation and pricing. By contrast, an open market of computational resources, where resource owners and resource users trade directly with each other, could lead to greater participation and more competitive pricing. To provide an open market, we introduce MODiCuM, a decentralized system for outsourcing computation. MODiCuM deters participants from misbehaving-which is a key problem in decentralized systems-by resolving disputes via dedicated mediators and by imposing enforceable fines. However, unlike other decentralized outsourcing solutions, MODiCuM minimizes computational overhead since it does not require global trust in mediation results. We provide analytical results proving that MODiCuM can deter misbehavior, and we evaluate the overhead of MODiCuM using experimental results based on an implementation of our platform.  more » « less
Award ID(s):
1818901 1647015
PAR ID:
10166772
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
International Conference on Distributed and Event Based Systems 2020
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. While cloud computing is the current standard for outsourcing computation, it can be prohibitively expensive for cities and infrastructure operators to deploy services. At the same time, there are underutilized computing resources within cities and local edge-computing deployments. Using these slack resources may enable significantly lower pricing than comparable cloud computing; such resources would incur minimal marginal expenditure since their deployment and operation are mostly sunk costs. However, there are challenges associated with using these resources. First, they are not effectively aggregated or provisioned. Second, there is a lack of trust between customers and suppliers of computing resources, given that they are distinct stakeholders and behave according to their own interests. Third, delays in processing inputs may diminish the value of the applications. To resolve these challenges, we introduce an architecture combining a distributed trusted computing mechanism, such as a blockchain, with an efficient messaging system like Apache Pulsar. Using this architecture, we design a decentralized computation market where customers and suppliers make offers to deploy and host applications. The proposed architecture can be realized using any trusted computing mechanism that supports smart contracts, and any messaging framework with the necessary features. This combination ensures that the market is robust without incurring the input processing delays that limit other blockchain-based solutions. We evaluate the market protocol using game-theoretic analysis to show that deviation from the protocol is discouraged. Finally, we assess the performance of a prototype implementation based on experiments with a streaming computer-vision application. 
    more » « less
  2. Harguess, Joshua D ; Bastian, Nathaniel D ; Pace, Teresa L (Ed.)
    Outsourcing computational tasks to the cloud offers numerous advantages, such as availability, scalability, and elasticity. These advantages are evident when outsourcing resource-demanding Machine Learning (ML) applications. However, cloud computing presents security challenges. For instance, allocating Virtual Machines (VMs) with varying security levels onto commonly shared servers creates cybersecurity and privacy risks. Researchers proposed several cryptographic methods to protect privacy, such as Multi-party Computation (MPC). Attackers unfortunately can still gain unauthorized access to users’ data if they successfully compromise a specific number of the participating MPC nodes. Cloud Service Providers (CSPs) can mitigate the risk of such attacks by distributing the MPC protocol over VMs allocated to separate physical servers (i.e., hypervisors). On the other hand, underutilizing cloud servers increases operational and resource costs, and worsens the overhead of MPC protocols. In this ongoing work, we address the security, communication and computation overheads, and performance limitations of MPC. We model this multi-objective optimization problem using several approaches, including but not limited to, zero-sum and non-zero-sum games. For example, we investigate Nash Equilibrium (NE) allocation strategies that reduce potential security risks, while minimizing response time and performance overhead, and/or maximizing resource usage. 
    more » « less
  3. In edge computing deployments, where devices may be in close proximity to each other, these devices may offload similar computational tasks (i.e., tasks with similar input data for the same edge computing service or for services of the same nature). This results in the execution of duplicate (redundant) computation, which may become a pressing issue for future edge computing environments, since such deployments are envisioned to consist of small-scale data-centers at the edge. To tackle this issue, in this paper, we highlight the importance of paradigms for the deduplication and reuse of computation at the network edge. Such paradigms have the potential to significantly reduce the completion times for offloaded tasks, accommodating more users, devices, and tasks with the same volume of deployed edge computing resources, however, they come with their own technical challenges. Finally, we present a multi-layer architecture to enable computation deduplication and reuse at the network edge and discuss open challenges and future research directions. 
    more » « less
  4. Mobile cloud computing systems, or simply mobile clouds, have attracted tremendous attention because they allow mobile devices with limited computational resources to offload complex computations. However, due to the channel uncertainty and the complexity of a computation task, mobile computation offloading may suffer from poor outage performance that the offloaded task cannot be completed within the desired delay constraint. Thus, how to efficiently identify and overcome the outage bottleneck, which could be used to optimize resource allocation schemes and improve the system performance effectively, is an open problem. In this paper, we shall develop a unified framework that minimizes the overall outage probability in various mobile computation offloading scenarios. More specifically, the outage bottleneck is defined and identified by adopting asymptotic analysis, without any need of the accurate outage probabilities in both transmissions and computations. To overcome the outage bottleneck, resource pairing, matching, and allocation policies are investigated. Both theoretical analysis and numerical results show that the outage bottleneck relies on not only the availability of spectrum and computation resources but also the probability distributions of computation complexities of the computation tasks. 
    more » « less
  5. Recent advancements in energy-harvesting techniques provide an alternative to batteries for resource constrained IoT devices and lead to a new computing paradigm, the intermittent computing model. In this model, a software module continues its execution from where it left off when an energy shortage occurred. Enforcing security of an intermittent software module is challenging because its power-off state has to be protected from a malicious adversary in addition to its power-on state, while the security mechanisms put in place must have a low overhead on the performance, resource consumption, and cost of a device. In this paper, we propose SIA (Secure Intermittent Architecture), a security architecture for resource-constrained IoT devices. SIA leverages low-cost security features available in commercial off-the-shelf microcontrollers to protect both the power-on and power-off state of an intermittent software module. Therefore, SIA enables a host of secure intermittent computing applications such as self-attestation, remote attestation, and secure communication. Moreover, our architecture provides confidentiality and integrity guarantees to an intermittent computing module at no cost compared to previous approaches in the literature that impose significant overheads. The salient characteristic of SIA is that it does not require any hardware modifications, and hence, it can be directly applied to existing IoT devices. We implemented and evaluated SIA on a resource-constrained IoT device based on an MSP430 processor. Besides being secure, SIA is simple and efficient. We confirm the feasibility of SIA for resource-constrained IoT devices with experimental results of several intermittent computing applications. Our prototype implementation outperforms by two to three orders of magnitude the secure intermittent computing solution of Suslowicz et al. presented at IGSC 2018. 
    more » « less