skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Persistent and substantial impacts of the Deepwater Horizon oil spill on deep-sea megafauna
The Deepwater Horizon spill is one of the largest environmental disasters with extensive impacts on the economic and ecological health of the Gulf of Mexico. Surface oil and coastal impacts received considerable attention, but the far larger oil spill in the deep ocean and its effects received considerably less examination. Based on 2017 ROV surveys within 500 m of the wellhead, we provide evidence of continued impacts on diversity, abundance and health of deep-sea megafauna. At locations proximal to the wellhead, megafaunal communities are more homogeneous than in unimpacted areas, lacking many taxonomic groups, and driven by high densities of arthropods. Degraded hydrocarbons at the site may be attracting arthropods. The scope of impacts may extend beyond the impacted sites with the potential for impacts to pelagic food webs and commercially important species. Overall, deep-sea ecosystem health, 7 years post spill, is recovering slowly and lingering effects may be extreme.  more » « less
Award ID(s):
1744048
PAR ID:
10166876
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Royal Society Open Science
Volume:
6
Issue:
8
ISSN:
2054-5703
Page Range / eLocation ID:
191164
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract Background The 2010 Deepwater Horizon (DWH) oil spill involved thousands of workers and volunteers to mitigate the oil release and clean-up after the spill. Health concerns for these participants led to the initiation of a prospective epidemiological study (GuLF STUDY) to investigate potential adverse health outcomes associated with the oil spill response and clean-up (OSRC). Characterizing the chemical exposures of the OSRC workers was an essential component of the study. Workers on the four oil rig vessels mitigating the spill and located within a 1852 m (1 nautical mile) radius of the damaged wellhead [the Discoverer Enterprise (Enterprise), the Development Driller II (DDII), the Development Driller III (DDIII), and the Helix Q4000] had some of the greatest potential for chemical exposures. Objectives The aim of this paper is to characterize potential personal chemical exposures via the inhalation route for workers on those four rig vessels. Specifically, we presented our methodology and descriptive statistics of exposure estimates for total hydrocarbons (THCs), benzene, toluene, ethylbenzene, xylene, and n-hexane (BTEX-H) for various job groups to develop exposure groups for the GuLF STUDY cohort. Methods Using descriptive information associated with the measurements taken on various jobs on these rig vessels and with job titles from study participant responses to the study questionnaire, job groups [unique job/rig/time period (TP) combinations] were developed to describe groups of workers with the same or closely related job titles. A total of 500 job groups were considered for estimation using the available 8139 personal measurements. We used a univariate Bayesian model to analyze the THC measurements and a bivariate Bayesian regression framework to jointly model the measurements of THC and each of the BTEX-H chemicals separately, both models taking into account the many measurements that were below the analytic limit of detection. Results Highest THC exposures occurred in TP1a and TP1b, which was before the well was mechanically capped. The posterior medians of the arithmetic mean (AM) ranged from 0.11 ppm (‘Inside/Other’, TP1b, DDII; and ‘Driller’, TP3, DDII) to 14.67 ppm (‘Methanol Operations’, TP1b, Enterprise). There were statistical differences between the THC AMs by broad job groups, rigs, and time periods. The AMs for BTEX-H were generally about two to three orders of magnitude lower than the THC AMs, with benzene and ethylbenzene measurements being highly censored. Conclusions Our results add new insights to the limited literature on exposures associated with oil spill responses and support the current epidemiologic investigation of potential adverse health effects of the oil spill. 
    more » « less
  2. Summary Marine oil spills are catastrophic events that cause massive damage to ecosystems at all trophic levels. While most of the research has focused on carbon‐degrading microorganisms, the potential impacts of hydrocarbons on microbes responsible for nitrification have received far less attention. Nitrifiers are sensitive to hydrocarbon toxicity: ammonia‐oxidizing bacteria and archaea being 100 and 1000 times more sensitive than typical heterotrophs respectively. Field studies have demonstrated the response of nitrifiers to hydrocarbons is highly variable and the loss of nitrification activity in coastal ecosystems can be restored within 1–2 years, which is much shorter than the typical recovery time of whole ecosystems (e.g., up to 20 years). Since the denitrification process is mainly driven by heterotrophs, which are more resistant to hydrocarbon toxicity than nitrifiers, the inhibition of nitrification may slow down the nitrogen turnover and increase ammonia availability, which supports the growth of oil‐degrading heterotrophs and possibly various phototrophs. A better understanding of the ecological response of nitrification is paramount in predicting impacts of oil spills on the nitrogen cycle under oil spill conditions, and in improving current bioremediation practices. 
    more » « less
  3. null (Ed.)
    The 2010 Deepwater Horizon disaster remains the largest single accidental release of oil and gas into the ocean. During the 87- day release, scientists used oceanographic tools to collect wellhead oil and gas samples, interrogate microbial community shifts and activities, and track the chemical composition of dissolved oil in the ocean’s interior. In the decade since the disaster, field and laboratory investigations studied the physics and chemistry of irrupted oil and gas at high pressure and low temperature, the role of chemical dispersants in oil composition and microbial hydrocarbon degradation, and the impact of combined oil, gas and dispersants on the flora and fauna of coastal and deep- sea environments. The multi- faceted, multidisciplinary scientific response to the released oil, gas and dispersants culminated in a better understanding of the environmental factors that influence the short- term and long- term fate and transport of oil in marine settings. In this Review , we summarize the unique aspects of the Deepwater Horizon release and highlight the advances in oil chemistry and microbiology that resulted from novel applications of emerging technologies. We end with an outlook on the applicability of these findings to possible oil releases in future deep- sea drilling locations and newly- opened high- latitude shipping lanes. 
    more » « less
  4. null (Ed.)
    The 2010 Deepwater Horizon disaster remains the largest single accidental release of oil and gas into the ocean. During the 87-day release, scientists used oceanographic tools to collect wellhead oil and gas samples, interrogate microbial community shifts and activities, and track the chemical composition of dissolved oil in the ocean’s interior. In the decade since the disaster, field and laboratory investigations studied the physics and chemistry of irrupted oil and gas at high pressure and low temperature, the role of chemical dispersants in oil composition and microbial hydrocarbon degradation, and the impact of combined oil, gas and dispersants on the flora and fauna of coastal and deep-sea environments. The multi-faceted, multidisciplinary scientific response to the released oil, gas and dispersants culminated in a better understanding of the environmental factors that influence the short-term and long-term fate and transport of oil in marine settings. In this Review, we summarize the unique aspects of the Deepwater Horizon release and highlight the advances in oil chemistry and microbiology that resulted from novel applications of emerging technologies. We end with an outlook on the applicability of these findings to possible oil releases in future deep-sea drilling locations and newly-opened high-latitude shipping lanes. 
    more » « less
  5. In the past decade, the Deepwater Horizon oil spill triggered a spike in investigatory effort on the effects of crude oil chemicals, most notably polycyclic aromatic hydrocarbons (PAHs), on marine organisms and ecosystems. Oysters, susceptible to both waterborne and sediment-bound contaminants due to their filter-feeding and sessile nature, have become of great interest among scientists as both a bioindicator and model organism for research on environmental stressors. It has been shown in many parts of the world that PAHs readily bioaccumulate in the soft tissues of oysters. Subsequent experiments have highlighted the negative effects associated with exposure to PAHs including the upregulation of antioxidant and detoxifying gene transcripts and enzyme activities such as Superoxide dismutase, Cytochrome P450 enzymes, and Glutathione S-transferase, reduction in DNA integrity, increased infection prevalence, and reduced and abnormal larval growth. Much of these effects could be attributed to either oxidative damage, or a reallocation of energy away from critical biological processes such as reproduction and calcification toward health maintenance. Additional abiotic stressors including increased temperature, reduced salinity, and reduced pH may change how the oyster responds to environmental contaminants and may compound the negative effects of PAH exposure. The negative effects of acidification and longer-term salinity changes appear to add onto that of PAH toxicity, while shorter-term salinity changes may induce mechanisms that reduce PAH exposure. Elevated temperatures, on the other hand, cause such large physiological effects on their own that additional PAH exposure either fails to cause any significant effects or that the effects have little discernable pattern. In this review, the oyster is recognized as a model organism for the study of negative anthropogenic impacts on the environment, and the effects of various environmental stressors on the oyster model are compared, while synergistic effects of these stressors to PAH exposure are considered. Lastly, the understudied effects of PAH photo-toxicity on oysters reveals drastic increases to the toxicity of PAHsviaphotooxidation and the formation of quinones. The consequences of the interaction between local and global environmental stressors thus provide a glimpse into the differential response to anthropogenic impacts across regions of the world. 
    more » « less