The Deepwater Horizon spill is one of the largest environmental disasters with extensive impacts on the economic and ecological health of the Gulf of Mexico. Surface oil and coastal impacts received considerable attention, but the far larger oil spill in the deep ocean and its effects received considerably less examination. Based on 2017 ROV surveys within 500 m of the wellhead, we provide evidence of continued impacts on diversity, abundance and health of deep-sea megafauna. At locations proximal to the wellhead, megafaunal communities are more homogeneous than in unimpacted areas, lacking many taxonomic groups, and driven by high densities of arthropods. Degraded hydrocarbons at the site may be attracting arthropods. The scope of impacts may extend beyond the impacted sites with the potential for impacts to pelagic food webs and commercially important species. Overall, deep-sea ecosystem health, 7 years post spill, is recovering slowly and lingering effects may be extreme.
more »
« less
Estimates of Occupational Inhalation Exposures to Six Oil-Related Compounds on the Four Rig Vessels Responding to the Deepwater Horizon Oil Spill
Abstract Background The 2010 Deepwater Horizon (DWH) oil spill involved thousands of workers and volunteers to mitigate the oil release and clean-up after the spill. Health concerns for these participants led to the initiation of a prospective epidemiological study (GuLF STUDY) to investigate potential adverse health outcomes associated with the oil spill response and clean-up (OSRC). Characterizing the chemical exposures of the OSRC workers was an essential component of the study. Workers on the four oil rig vessels mitigating the spill and located within a 1852 m (1 nautical mile) radius of the damaged wellhead [the Discoverer Enterprise (Enterprise), the Development Driller II (DDII), the Development Driller III (DDIII), and the Helix Q4000] had some of the greatest potential for chemical exposures. Objectives The aim of this paper is to characterize potential personal chemical exposures via the inhalation route for workers on those four rig vessels. Specifically, we presented our methodology and descriptive statistics of exposure estimates for total hydrocarbons (THCs), benzene, toluene, ethylbenzene, xylene, and n-hexane (BTEX-H) for various job groups to develop exposure groups for the GuLF STUDY cohort. Methods Using descriptive information associated with the measurements taken on various jobs on these rig vessels and with job titles from study participant responses to the study questionnaire, job groups [unique job/rig/time period (TP) combinations] were developed to describe groups of workers with the same or closely related job titles. A total of 500 job groups were considered for estimation using the available 8139 personal measurements. We used a univariate Bayesian model to analyze the THC measurements and a bivariate Bayesian regression framework to jointly model the measurements of THC and each of the BTEX-H chemicals separately, both models taking into account the many measurements that were below the analytic limit of detection. Results Highest THC exposures occurred in TP1a and TP1b, which was before the well was mechanically capped. The posterior medians of the arithmetic mean (AM) ranged from 0.11 ppm (‘Inside/Other’, TP1b, DDII; and ‘Driller’, TP3, DDII) to 14.67 ppm (‘Methanol Operations’, TP1b, Enterprise). There were statistical differences between the THC AMs by broad job groups, rigs, and time periods. The AMs for BTEX-H were generally about two to three orders of magnitude lower than the THC AMs, with benzene and ethylbenzene measurements being highly censored. Conclusions Our results add new insights to the limited literature on exposures associated with oil spill responses and support the current epidemiologic investigation of potential adverse health effects of the oil spill.
more »
« less
- Award ID(s):
- 1916349
- PAR ID:
- 10292735
- Date Published:
- Journal Name:
- Annals of Work Exposures and Health
- ISSN:
- 2398-7308
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
SAE, Transactions (Ed.)An investigation into emissions differences and their correlations with differing combustion characteristics between F24 and Jet-A was conducted. Raw emissions data was taken from a single stage jet engine by a FTIR gas analyzer. Measurements of H2O, CO2, CO, NOx, and total hydrocarbon emissions (THC) were taken at 60K, 65K, and 70K RPM. At 70K RPM Jet-A and F-24 the emissions were similar at approx.: 4% H2O, 3% CO2, 970 PPM CO, 28 PPM NOx. Jet-A THC emissions were approx.: 1200 PPM THC, F24 THC emissions were lower by over 60%. The significantly lower amount of THC emissions for F24 suggests more complete combustion compared to Jet-A.more » « less
-
Taylor, Jennifer E (Ed.)Research administrators are integral to the research enterprise, yet the profession remains hindered by the absence of standardized job titles, responsibilities, and compensation frameworks. These inconsistencies drive turnover, restrict career progression, and weaken institutional efficiency. The findings and recommendations from a three-phase National Science Foundation (NSF)-funded GRANTED conference are presented in this study. To begin, regional focus groups with research administration leaders and human resources professionals identified themes related to organizational structures and workforce practices. These insights informed a national survey that produced 2,441 responses across diverse institution types from individuals with more than 1,200 distinct job titles. A final workshop of senior practitioners reviewed the survey results and provided recommendations. Findings indicate that workload, limited advancement opportunities, and inadequate compensation are leading causes of attrition, while misaligned human resources policies, decentralized authority, and regional pay variation prevent standardization. Participants stressed the need for consistent job descriptions, defined competencies, and equitable pay frameworks. The results underscore the importance of developing a national job classification system for research administrators to stabilize the profession and strengthen institutional research infrastructure.more » « less
-
NA (Ed.)Oil spill in oceans is identified as a key environmental issue resulting in water contamination and major harm to marine life. These spills in ice-infested waters can be even more catastrophic as the process of ice melting is non-trivial and adds an additional complexity in determining the extent of the oil spread from the initial spill zone. The prediction of the impact and extent of the spill assists in employing the required clean-up countermeasures. A validated numerical model that simulates the oil spread is reported in this study, where the spread of an oil layer in ice is analyzed. Experiments in literature have shown that for solar radiation flux higher than 0.5 kW/m2, the oil temperatures can be around 5 - 6 ºC even if the ambient is at sub-zero temperature. This surface heating is simulated in the numerical model to study the effect of in-depth heating of oil on the ice melting to further analyze the spreading of oil in the melt zone.more » « less
-
This engineering curriculum is designed for students in 6-8 grade where they learn about the concept of polarity and mixing through the phenomenon of oil separating from water by simulating an oil spill that demonstrates the impact of these molecular qualities on the environment. In the first part of the activity, students get familiar with the concept of polarity and how it causes oil to float on water through molecular models and demonstrations. The second part entails a simulation of an oil spill in the ocean, where students are given a variety of tools and will engineer their own solutions to clean up the spill through trial and testing. Finally, they discuss the real-world methods used to clean up oil spills, and their impact on the environment. This engineering curriculum aligns to Next Generation Science Standards.more » « less
An official website of the United States government

