skip to main content

Title: Optical properties of undoped, Eu 3+ doped and Li + co-doped Y 2 Hf 2 O 7 nanoparticles and polymer nanocomposite films
Desirable phosphors for lighting, scintillation and composite films must have good light absorption properties, high concentration quenching, high quantum efficiency, a narrow color emission, and so forth. In this work, we first show that undoped yttrium hafnate Y 2 Hf 2 O 7 (YHO) nanoparticles (NPs) display dual blue and red bands after excitation using 330 nm light. Based on density functional theory (DFT) calculations, these two emission bands are correlated with the defect states arising in the band-gap region of YHO owing to the presence of neutral and charged oxygen defects. Once doped with Eu 3+ ions (YHOE), the YHO NPs show a bright red emission, a long excited state lifetime and stable color coordinates upon near-UV and X-ray excitation. Concentration quenching is active when Eu 3+ doping reaches 10 mol% with a critical distance of ∼4.43 Å. This phenomenon indicates a high Eu 3+ solubility within the YHO host and the absence of Eu 3+ clusters. More importantly, the optical performance of the YHOE NPs has been further improved by lithium co-doping. The origin of the emission, structural stability, and role of Li + -co-doping are explored both experimentally and theoretically. DFT calculation results demonstrate that Li + more » -co-doping increases the covalent character of the Eu 3+ –O 2− bonding in the EuO 8 polyhedra. Furthermore, the YHOE NPs have been dispersed into polyvinyl alcohol (PVA) to make transparent nanocomposite films, which show strong red emission under excitation at 270 and 393 nm. Overall, we demonstrate that the YHO NPs with Eu 3+ and (Eu 3+ /Li + ) doping have a high emission intensity and quantum efficiency under UV and X-ray excitation, which makes them suitable for use as phosphors, scintillators and transparent films for lighting, imaging and detection applications. « less
; ; ; ;
Award ID(s):
Publication Date:
Journal Name:
Inorganic Chemistry Frontiers
Page Range or eLocation-ID:
505 to 518
Sponsoring Org:
National Science Foundation
More Like this
  1. Controlled energy transfer has been found to be one of the most effective ways of designing tunable and white photoluminescent phosphors. Utilizing host emission to achieve the same would lead to a new dimension in the design strategy for novel luminescent materials in solid state lighting and display devices. In this work, we have achieved controlled energy transfer by suppressing the host to dopant energy transfer in La 2 Hf 2 O 7 :Eu 3+ nanoparticles (NPs) by co-doping with uranium ions. Uranium acts as a barrier between the oxygen vacancies of the La 2 Hf 2 O 7 host and Eu 3+ doping ions to increase their separation and reduce the non-radiative energy transfer between them. Density functional theory (DFT) calculations of defect formation energy showed that the Eu 3+ dopant occupies the La 3+ site and the uranium ion occupies the Hf 4+ site. Co-doping the La 2 Hf 2 O 7 :Eu 3+ NPs with uranium ions creates negatively charged lanthanum and hafnium vacancies making the system highly electron rich. Formation of cation vacancies is expected to compensate the excess charge in the U and Eu co-doped La 2 Hf 2 O 7 NPs suppressing the formationmore »of oxygen vacancies. This work shows how one can utilize the full color gamut in the La 2 Hf 2 O 7 :Eu 3+ ,U 6+ NPs with blue, green and red emissions from the host, uranium and europium, respectively, to produce near perfect white light emission.« less
  2. Abstract

    Unveiling the underlying mechanisms of properties of functional materials, including the luminescence differences among similar pyrochlores A2B2O7, opens new gateways to select proper hosts for various optoelectronic applications by scientists and engineers. For example, although La2Zr2O7(LZO) and La2Hf2O7(LHO) pyrochlores have similar chemical compositional and crystallographic structural features, they demonstrate different luminescence properties both before and after doped with Eu3+ions. Based on our earlier work, LHO‐based nanophosphors display higher photo‐ and radioluminescence intensity, higher quantum efficiency, and longer excited state lifetime compared to LZO‐based nanophosphors. Moreover, under electronic O2−→Zr4+/Hf4+transition excitation at 306 nm, undoped LHO nanoparticles (NPs) have only violet blue emission, whereas LZO NPs show violet blue and red emissions. In this study, we have combined experimental and density functional theory (DFT) based theoretical calculation to explain the observed results. First, we calculated the density of state (DOS) based on DFT and studied the energetics of ionized oxygen vacancies in the band gaps of LZO and LHO theoretically, which explain their underlying luminescence difference. For Eu3+‐doped NPs, we performed emission intensity and lifetime calculations and found that the LHOE NPs have higher host to dopant energy transfer efficiency than the LZOE NPs (59.3% vs 24.6%), which accounts for the opticalmore »performance superiority of the former over the latter. Moreover, by corroborating our experimental data with the DFT calculations, we suggest that the Eu3+doping states in LHO present at exact energy position (both in majority and minority spin components) where oxygen defect states are located unlike those in LZO. Lastly, both the NPs show negligible photobleaching highlighting their potential for bioimaging applications. This current report provides a deeper understanding of the advantages of LHO over LZO as an advanced host for phosphors, scintillators, and fluoroimmunoassays.

    « less
  3. New optical materials with efficient luminescence and scintillation properties have drawn a great deal of attention due to the demand for optoelectronic devices and medical theranostics. Their nanomaterials are expected to reduce the cost while incrementing the efficiency for potential lighting and scintillator applications. In this study, we have developed praseodymium-doped lanthanum hafnate (La 2 Hf 2 O 7 :Pr 3+ ) pyrochlore nanoparticles (NPs) using a combined co-precipitation and relatively low-temperature molten salt synthesis procedure. XRD and Raman investigations confirmed ordered pyrochlore phase for the as-synthesized undoped and Pr 3+ -doped La 2 Hf 2 O 7 NPs. The emission profile displayed the involvement of both the 3 P 0 and 1 D 2 states in the photoluminescence process, however, the intensity of the emission from the 1 D 2 states was found to be higher than that from the 3 P 0 states. This can have a huge implication on the design of novel red phosphors for possible application in solid-state lighting. As a function of the Pr 3+ concentration, we found that the 0.1%Pr 3+ doped La 2 Hf 2 O 7 NPs possessed the strongest emission intensity with a quantum yield of 20.54 ± 0.1%. Themore »concentration quenching, in this case, is mainly induced by the cross-relaxation process 3 P 0 + 3 H 4 → 1 D 2 + 3 H 6 . Emission kinetics studies showed that the fast decaying species arise because of the Pr 3+ ions occupying the Hf 4+ sites, whereas the slow decaying species can be attributed to the Pr 3+ ions occupying the La 3+ sites in the pyrochlore structure of La 2 Hf 2 O 7 . X-ray excited luminescence (XEL) showed a strong red-light emission, which showed that the material is a promising scintillator for radiation detection. In addition, the photon counts were found to be much higher when the NPs are exposed to X-rays when compared to ultraviolet light. Altogether, these La 2 Hf 2 O 7 :Pr 3+ NPs have great potential as a good down-conversion phosphor as well as scintillator material.« less
  4. Developing chemically and thermally stable, highly efficient green-emitting inorganic phosphors is a significant challenge in solid-state lighting. One accessible pathway for achieving green emission is by forming a solid solution with superior blue-emitting materials. In this work, we demonstrate that the cyan-emission ( λ em = 481 nm) of the BaScO 2 F:Eu 2+ perovskite can be red-shifted by forming a solid solution following (Ba 1− x Sr x ) 0.98 Eu 0.02 ScO 2 F ( x = 0, 0.075, 0.15, 0.25, 0.33, 0.40). Although green emission is achieved ( λ em = 516 nm) as desired, the thermal quenching (TQ) resistance is reduced, and the photoluminescence quantum yield (PLQY) drops by 65%. Computation reveals the source of these changes. Surprisingly, a basic density functional theory analysis shows the gradual Sr Ba substitution has negligible effects on the band gap ( E g ) energy, suggesting the activation energy barrier for the thermal ionization quenching remains unchanged, while the nearly constant Debye temperature indicates no loss of average structural rigidity to explain the decrease in the PLQY. Instead, temperature-dependent ab initio molecular dynamics (AIMD) simulations show that gradual changes of the Eu 2+ ion's local coordination environment rigidity aremore »responsible for the drop in the observed TQ and PLQY. These results express the need to computationally analyze the local rare-earth environment as a function of temperature to understand the fundamental origin of optical properties in new inorganic phosphors.« less
  5. Abstract

    Rare-earth substituted inorganic phosphors are critical for solid state lighting. New phosphors are traditionally identified through chemical intuition or trial and error synthesis, inhibiting the discovery of potential high-performance materials. Here, we merge a support vector machine regression model to predict a phosphor host crystal structure’s Debye temperature, which is a proxy for photoluminescent quantum yield, with high-throughput density functional theory calculations to evaluate the band gap. This platform allows the identification of phosphors that may have otherwise been overlooked. Among the compounds with the highest Debye temperature and largest band gap, NaBaB9O15shows outstanding potential. Following its synthesis and structural characterization, the structural rigidity is confirmed to stem from a unique corner sharing [B3O7]5–polyanionic backbone. Substituting this material with Eu2+yields UV excitation bands and a narrow violet emission at 416 nm with a full-width at half-maximum of 34.5 nm. More importantly, NaBaB9O15:Eu2+possesses a quantum yield of 95% and excellent thermal stability.