skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Optical properties of undoped, Eu 3+ doped and Li + co-doped Y 2 Hf 2 O 7 nanoparticles and polymer nanocomposite films
Desirable phosphors for lighting, scintillation and composite films must have good light absorption properties, high concentration quenching, high quantum efficiency, a narrow color emission, and so forth. In this work, we first show that undoped yttrium hafnate Y 2 Hf 2 O 7 (YHO) nanoparticles (NPs) display dual blue and red bands after excitation using 330 nm light. Based on density functional theory (DFT) calculations, these two emission bands are correlated with the defect states arising in the band-gap region of YHO owing to the presence of neutral and charged oxygen defects. Once doped with Eu 3+ ions (YHOE), the YHO NPs show a bright red emission, a long excited state lifetime and stable color coordinates upon near-UV and X-ray excitation. Concentration quenching is active when Eu 3+ doping reaches 10 mol% with a critical distance of ∼4.43 Å. This phenomenon indicates a high Eu 3+ solubility within the YHO host and the absence of Eu 3+ clusters. More importantly, the optical performance of the YHOE NPs has been further improved by lithium co-doping. The origin of the emission, structural stability, and role of Li + -co-doping are explored both experimentally and theoretically. DFT calculation results demonstrate that Li + -co-doping increases the covalent character of the Eu 3+ –O 2− bonding in the EuO 8 polyhedra. Furthermore, the YHOE NPs have been dispersed into polyvinyl alcohol (PVA) to make transparent nanocomposite films, which show strong red emission under excitation at 270 and 393 nm. Overall, we demonstrate that the YHO NPs with Eu 3+ and (Eu 3+ /Li + ) doping have a high emission intensity and quantum efficiency under UV and X-ray excitation, which makes them suitable for use as phosphors, scintillators and transparent films for lighting, imaging and detection applications.  more » « less
Award ID(s):
1710160
PAR ID:
10167106
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Inorganic Chemistry Frontiers
Volume:
7
Issue:
2
ISSN:
2052-1553
Page Range / eLocation ID:
505 to 518
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Controlled energy transfer has been found to be one of the most effective ways of designing tunable and white photoluminescent phosphors. Utilizing host emission to achieve the same would lead to a new dimension in the design strategy for novel luminescent materials in solid state lighting and display devices. In this work, we have achieved controlled energy transfer by suppressing the host to dopant energy transfer in La 2 Hf 2 O 7 :Eu 3+ nanoparticles (NPs) by co-doping with uranium ions. Uranium acts as a barrier between the oxygen vacancies of the La 2 Hf 2 O 7 host and Eu 3+ doping ions to increase their separation and reduce the non-radiative energy transfer between them. Density functional theory (DFT) calculations of defect formation energy showed that the Eu 3+ dopant occupies the La 3+ site and the uranium ion occupies the Hf 4+ site. Co-doping the La 2 Hf 2 O 7 :Eu 3+ NPs with uranium ions creates negatively charged lanthanum and hafnium vacancies making the system highly electron rich. Formation of cation vacancies is expected to compensate the excess charge in the U and Eu co-doped La 2 Hf 2 O 7 NPs suppressing the formation of oxygen vacancies. This work shows how one can utilize the full color gamut in the La 2 Hf 2 O 7 :Eu 3+ ,U 6+ NPs with blue, green and red emissions from the host, uranium and europium, respectively, to produce near perfect white light emission. 
    more » « less
  2. null (Ed.)
    The proliferation of energy-efficient light-emitting diode (LED) lighting has resulted in continued exposure to blue light, which has been linked to cataract formation, circadian disruption, and mood disorders. Blue light can be readily minimized in pursuit of “human-centric” lighting using a violet LED chip (λem ≈ 405 nm) downconverted by red, green, and blue-emitting phosphors. However, few phosphors efficiently convert violet light to blue light. This work reports a new phosphor that meets this demand. Na2MgPO4F:Eu2+ can be excited by a violet LED yielding an efficient, bright blue emission. The material also shows zero thermal quenching and has outstanding chromatic stability. The chemical robustness of the phosphor was also confirmed through prolonged exposure to water and high temperatures. A prototype device using a 405 nm LED, Na2MgPO4F:Eu2+, and a green and red-emitting phosphor produces a warm white light with a higher color rendering index than a commercially purchased LED light bulb while significantly reducing the blue component. These results demonstrate the capability of Na2MgPO4F:Eu2+ as a next-generation phosphor capable of advancing human-centric lighting. 
    more » « less
  3. null (Ed.)
    There is a significant need to identify cyan-emitting phosphors capable of filling the “cyan-gap” (480–520 nm) in full-visible-spectrum phosphor-converted white light-emitting diodes (pc-wLEDs). Here, a new broadband cyan-emitting phosphor that enables addressing of this challenge is reported. The compound, Ba 2 CaB 2 Si 4 O 14 :Ce 3+ , presents a bright cyan emission peaking at 478 nm with a large full width at half maximum of 142 nm (6053 cm −1 ), and minimal thermal quenching. The photoluminescence properties originate from Ce 3+ residing at two different crystallographic sites, a [BaO 9 ] distorted elongated square pyramid and a [CaO 6 ] trigonal prism. This combination results in an efficient, broad emission covering the blue to green region of the visible spectrum. Fabricating a simple dichromatic ultraviolet ( λ ex = 370 nm) pumped pc-wLED using Ba 2 CaB 2 Si 4 O 14 :Ce 3+ along with a commercially available red phosphor demonstrates full-visible-spectrum white light with high color rendering index ( R a > 90) and tunable correlated color temperature, showing the potential of this material for achieving high-quality LED-based lighting. 
    more » « less
  4. Abstract Unveiling the underlying mechanisms of properties of functional materials, including the luminescence differences among similar pyrochlores A2B2O7, opens new gateways to select proper hosts for various optoelectronic applications by scientists and engineers. For example, although La2Zr2O7(LZO) and La2Hf2O7(LHO) pyrochlores have similar chemical compositional and crystallographic structural features, they demonstrate different luminescence properties both before and after doped with Eu3+ions. Based on our earlier work, LHO‐based nanophosphors display higher photo‐ and radioluminescence intensity, higher quantum efficiency, and longer excited state lifetime compared to LZO‐based nanophosphors. Moreover, under electronic O2−→Zr4+/Hf4+transition excitation at 306 nm, undoped LHO nanoparticles (NPs) have only violet blue emission, whereas LZO NPs show violet blue and red emissions. In this study, we have combined experimental and density functional theory (DFT) based theoretical calculation to explain the observed results. First, we calculated the density of state (DOS) based on DFT and studied the energetics of ionized oxygen vacancies in the band gaps of LZO and LHO theoretically, which explain their underlying luminescence difference. For Eu3+‐doped NPs, we performed emission intensity and lifetime calculations and found that the LHOE NPs have higher host to dopant energy transfer efficiency than the LZOE NPs (59.3% vs 24.6%), which accounts for the optical performance superiority of the former over the latter. Moreover, by corroborating our experimental data with the DFT calculations, we suggest that the Eu3+doping states in LHO present at exact energy position (both in majority and minority spin components) where oxygen defect states are located unlike those in LZO. Lastly, both the NPs show negligible photobleaching highlighting their potential for bioimaging applications. This current report provides a deeper understanding of the advantages of LHO over LZO as an advanced host for phosphors, scintillators, and fluoroimmunoassays. 
    more » « less
  5. Developing chemically and thermally stable, highly efficient green-emitting inorganic phosphors is a significant challenge in solid-state lighting. One accessible pathway for achieving green emission is by forming a solid solution with superior blue-emitting materials. In this work, we demonstrate that the cyan-emission ( λ em = 481 nm) of the BaScO 2 F:Eu 2+ perovskite can be red-shifted by forming a solid solution following (Ba 1− x Sr x ) 0.98 Eu 0.02 ScO 2 F ( x = 0, 0.075, 0.15, 0.25, 0.33, 0.40). Although green emission is achieved ( λ em = 516 nm) as desired, the thermal quenching (TQ) resistance is reduced, and the photoluminescence quantum yield (PLQY) drops by 65%. Computation reveals the source of these changes. Surprisingly, a basic density functional theory analysis shows the gradual Sr Ba substitution has negligible effects on the band gap ( E g ) energy, suggesting the activation energy barrier for the thermal ionization quenching remains unchanged, while the nearly constant Debye temperature indicates no loss of average structural rigidity to explain the decrease in the PLQY. Instead, temperature-dependent ab initio molecular dynamics (AIMD) simulations show that gradual changes of the Eu 2+ ion's local coordination environment rigidity are responsible for the drop in the observed TQ and PLQY. These results express the need to computationally analyze the local rare-earth environment as a function of temperature to understand the fundamental origin of optical properties in new inorganic phosphors. 
    more » « less