The Open Cluster Chemical Abundances and Mapping Survey. IV. Abundances for 128 Open Clusters Using SDSS/APOGEE DR16
- PAR ID:
- 10167401
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Date Published:
- Journal Name:
- The Astronomical Journal
- Volume:
- 159
- Issue:
- 5
- ISSN:
- 1538-3881
- Page Range / eLocation ID:
- 199
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract Open clusters are key chemical and age tracers of Milky Way evolution. While open clusters provide significant constraints on galaxy evolution, their use has been limited due to discrepancies in measuring abundances from different studies. We analyze medium-resolution (R∼ 19,000) Cerro Tololo Inter-American Observatory/Hydra spectra of giant stars in 58 open clusters using The Cannon to determine [Fe/H], [Mg/Fe], [Si/Fe], [Al/Fe], and [O/Fe]. This work adds an additional 55 primarily southern hemisphere open clusters calibrated to the Sloan Digital Sky Survey/Apache Point Observatory Galactic Evolution Experiment DR16 metallicity system. This uniform analysis is compared to previous studies [Fe/H] measurements for 23 clusters and we present spectroscopic metallicities for the first time for 35 open clusters.more » « less
-
Stars in an open cluster are assumed to have formed from a broadly homogeneous distribution of gas, implying that they should be chemically homogeneous. Quantifying the level to which open clusters are chemically homogeneous can therefore tell us about ISM pollution and gas-mixing in progenitor molecular clouds. Using SDSS-V Milky Way Mapper and SDSS-IV APOGEE DR17 abundances, we test this assumption by quantifying intrinsic chemical scatter in up to 20 different chemical abundances across 26 Milky Way open clusters. We find that we can place 3σ upper limits on open cluster homogeneity within 0.02 dex or less in the majority of elements, while for neutron capture elements, as well as those elements having weak lines, we place limits on their homogeneity within 0.2 dex. Finally, we find that giant stars in open clusters are ~0.01 dex more homogeneous than a matched sample of field stars.more » « less
-
Abstract Large-scale surveys open the possibility to investigate Galactic evolution both chemically and kinematically; however, reliable stellar ages remain a major challenge. Detailed chemical information provided by high-resolution spectroscopic surveys of the stars in clusters can be used as a means to calibrate recently developed chemical tools for age-dating field stars. Using data from the Open Cluster Abundances and Mapping survey, based on the Sloan Digital Sky Survey/Apache Point Observatory Galactic Evolution Experiment 2 survey, we derive a new empirical relationship between open cluster stellar ages and the carbon-to-nitrogen ([C/N]) abundance ratios for evolved stars, primarily those on the red giant branch. With this calibration, [C/N] can be used as a chemical clock for evolved field stars to investigate the formation and evolution of different parts of our Galaxy. We explore how mixing effects at different stellar evolutionary phases, like the red clump, affect the derived calibration. We have established the [C/N]–age calibration for APOGEE Data Release 17 (DR17) giant star abundances to be , usable for , derived from a uniform sample of 49 clusters observed as part of APOGEE DR17 applicable primarily to metal-rich, thin- and thick-disk giant stars. This measured [C/N]–age APOGEE DR17 calibration is also shown to be consistent with asteroseismic ages derived from Kepler photometry.more » « less
-
ABSTRACT This paper presents chemical abundances of 12 elements (C, Na, Mg, Al, Si, K, Ca, Ti, V, Cr, Mn, and Fe) for 80 FGK dwarfs in the Pleiades open cluster, which span a temperature range of $$\sim$$2000 K in T$$_{\rm eff}$$, using the high-resolution (R$$\sim$$22 500) near-infrared SDSS (Sloan Digital Sky Survey)-IV/APOGEE (Apache Point Observatory Galactic Evolution Experiment) spectra ($$\lambda$$1.51–1.69 $$\mu$$m). Using a 1D local thermodynamic equilibrium abundance analysis, we determine an overall metallicity of [Fe/H] = +0.03 $$\pm$$ 0.04 dex, with the elemental ratios [$$\alpha$$/Fe] = +0.01 $$\pm$$ 0.05, [odd-z/Fe] = –0.04 $$\pm$$ 0.08, and [iron peak/Fe] = –0.02 $$\pm$$ 0.08. These abundances for the Pleiades are in line with the abundances of other open clusters at similar galactocentric distances as presented in the literature. Examination of the abundances derived from each individual spectral line revealed that several of the stronger lines displayed trends of decreasing abundance with decreasing $$T_{\rm eff}$$. The list of spectral lines that yield abundances that are independent of $$T_{\rm eff}$$ are presented and used for deriving the final abundances. An investigation into possible causes of the temperature-dependent abundances derived from the stronger lines suggests that the radiative codes and the APOGEE line list we employ may inadequately model van der Waals broadening, in particular in the cooler K dwarfs.more » « less
An official website of the United States government

